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Our research program (1) demonstrated the relationship between the spectrum and 
intensity of low-frequency fluctuations and the collisionless transport of energetic trapped 
particles, (2) verified the applicability of the guiding-center drift Hamiltonian as the 
foundation for numerical simulation of driven particle flows, (3) derived a unified 
analytical theory of the electron and ion tearing instability in the presence of all three 
components of the tail magnetic field in order to identify a trigger for substorms, and (4) 
investigated the effect of small but finite resistivity on the dynamics of current-sheet 
formation in the solar corona. All topics originally proposed for study have been 
addressed by our studies and published within archival journals. In addition, our research 
uncovered entirely new topics of investigation which are the subject of new and 
separately funded research activities. 

In the following, we present a brief summary of previous work and attach reprints 
of our publications. This summary is separated into (1) a report of the results from the 
laboratory investigation of collisionless energetic particle transport induced by 
fluctuations, and (2) a report of the subcontract with the University of Iowa summarizing 
the conclusions of new theories applied to substorm modeling and current sheet 

formation. OVJ 

1. LABORATORY INVESTIGATION OF COLLISIONLESS ENERGETIC 
PARTICLE TRANSPORT 

In this part of our research, we summarize experimental and computational 
investigations of the effects of drift-resonant fluctuations, chaotic transport of trapped, 
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energetic electrons, threshold for global chaotic transport, and particle simulation using 
the guiding center drift Hamiltonian and permitting a detailed comparison between the 
chaotic evolution of phase-space and laboratory observations of intense collisionless 
radial transport. This research resulted in three referred publications, several invited 
lectures, and one doctoral dissertation. 

We divided our research into three main parts: (1) formation and observation of an 
artificial radiation belt, (2) measurement of collisionless fluctuation-induced transport, 
and (3) modeling and interpretation of the experimental results. The major result from 
this research is the detailed demonstration of the relationship between collisionless 
radial transport and the spectral intensity of drift-resonant fluctuations. 

FORMATION AND OBSERVATION OF AN ARTIFICIAL RADIATION BELT 

Our first laboratory tasks were (1) to complete construction of the Colllisionless 
Terrella Experiment (CTX) and (2) to produce and characterize an "artificial radiation 
belt" of energetic electrons. 

The CTX represented the first attempt to produce a collisionless, high-energy 
plasma confined by a laboratory dipole magnetic field, and optimization of the energetic 
electron production technique and development of new plasma diagnostics were required. 
We were succeeded to produce and sustain a non-Maxwellian population of energetic 
electrons with microwave heating [1,2] characterized by a "power-law" energy spectrum 
having magnetospheric relevance. A relatively low background neutral gas density gave 
the energetic electrons a very long mean-time between collisions, Tco/ > IQßlcOd, and their 
motion was essentially adiabatic in the absence of resonant fluctuations. Since plasmas 
were created using electron cyclotron resonance heating (ECRH), the heating was 
localized at a particular radius. An intense ring of energetic electrons would form, and we 
referred to this localized population of energetic electrons as an "artificial radiation belt." 

Using a variety of movable probes, we observed Hot Electron Interchange (HEI) 
instabilities. In a dipole-confined plasma, the HEI instability appeared with a complex 
and evolving spectrum of multi-mode waves resonating with the precessional drifts of the 
energetic electrons. The waves are excited when the radial density gradient of the 
artificial radiation belt steepens during microwave heating. These waves served as 
laboratory "test waves" for our investigation of collisionless chaotic transport of trapped 
particles in dipolar magnetic fields. In a manner of speaking, they are the analogs to the 
externally driven and the internally excited global variations of the Earth's geomagnetic 
and electric fields. 



MEASUREMENT OF COLLISIONLESS FLUCTUATION-INDUCED 
TRANSPORT 

Our next significant achievement was the detailed measurement of the electrostatic 
fluctuations and induced electron transport. Using high-impedance, high-frequency 
electrostatic probes and miniature, gridded particle energy analyzers, we were able to 
measure both wave-spectra leading to global chaotic transport and wave-spectra leading 
to saturated, isolated bands of stochastic drifts. We found the wave-amplitude alone to be 
a poor indicator of chaos. Both the spectral content and the wave amplitude were needed 
to determine the onset and magnitude of wave-induced transport. Energetic electron 
transport was observed only when the wave-spectra was consistent with our predictions 
of global chaos. The fluctuations resulted in more than an order-of-magnitude increase in 
detected particle flux. Additionally, we discovered a strong temporal modulation of the 
energetic electron flux induced by the fluctuations. 

MODELING AND INTERPRETATION OF THE 
EXPERIMENTAL RESULTS 

The detailed experimental results obtained from CTX enable the first global 
simulation of collisionless radial transport of energetic particles induced by drift-resonant 
fluctuations having complex spectral content. These results are significant since they 
establish a physics basis for similar modeling of energetic particle transport induced by 
electric and magnetic fluctuations in the Earth's magnetosphere. 

Our description of particle dynamics driven by large scale fluctuations is based on a 
guiding center Hamiltonian formalism. The guiding center Hamiltonian facilitates 
comparison between processes observed in the laboratory with those observed in the 
magnetosphere. Since we were able to observe energetic electron transport only when the 
wave-spectra was consistent with our predictions of global chaos, we have been able 
interpret our laboratory results in terms of fundamental properties of radial transport in 
dipole magnetic fields. By conducting relatively simple particle simulations based upon 
the guiding-center drift Hamiltonian and using the spectral intensity of the fluctuations 
observed experimentally, we successfully modeled the observed transport [2] and 
developed detailed understanding of the temporal modulations of the local energetic 
particle flux and of the reasons for the presence or absence of transport as the spectral 
content broadens [3]. The temporal modulations of the energetic particle flux measured at 
a localized particle detector is analogous to drift echoes observed following a impulsive 
events in the magnetosphere. Drift resonant fluctuations which do not lead to global 



chaos are analogous to various geomagnetic pulsations which modulate particle phase- 
space without causing transport. 

Although we have been able to compare theoretically the observed transport rates 
with quasilinear predictions, we have not yet measured global transport rates or the 
profile evolution of the energetic particle flux. New diagnostic arrays have been installed 
in order to measure profile evolution of the x-ray bremsstrahlung emission, neutral light 
emission, and polar precipitation rates [4]. These measurements are critically important to 
our goals (1) of examining radial chaotic transport which preserves the first two adiabatic 
invariants, ji, 7, (2) of observing the natural tendency for phase-space profiles to evolve to 
"stationary" profiles, dF/d\y~ 0, during chaotic transport, and (3) of understanding the 
relationship of these profiles to dipole plasma stability criteria. These measurements are 
used as the basis of a new diagnostic array presently being installed. 

The observations from CTX have also excited interest in the wider plasma physics 
community, especially scientists investigating plasma chaos and nonlinear behaviors. The 
processes represented by adiabatic radial transport (and illustrated by storm-time inward 
diffusion of particles and energy) is being studied as an explanation of the anomalous 
pinch effect seen in toroidal magnetic plasma devices. The slow, rising tones, or 
"chirping", seen in CTX appears to be ideally suited to investigate time-evolving, 
nonlinear wave-particle resonances. Under certain conditions, frequency modulation 
leads to enhanced transport due to "dynamic autoresonance", unlimited acceleration, and 
"bursting" and "blow-up". Particularly relevant to CTX observations is the possible 
transport of phase-space "holes" or "clumps" generated by slowly evolving wave-particle 
resonances. At this time, we are not certain of the importance of these related phenomena 
to processes within the terrestrial magnetosphere. However, the physics underlying this 
phenomena is generally applicable to all instability processes near marginal criticality, 
and future observations in space may still discover events involving wave-particle 
resonant trapping—provided that multi-point wave measurements are deployed. Indeed, 
Chen and co-workers, observe "resonance broadening" effects in the storm-time ring 
current, and nonlinear wave-trapping may be the explanation for energy-dependent 
enhancements of the radial diffusion coefficient. 

The CTX device has enabled unique and significant tests of (1) the application of 
guiding center theory to large-scale transport of energetic plasma within a dipole 
magnetic field, and (2) recent developments in nonlinear wave-particle dynamics. These 
include: 

1. Demonstrated the utility of the guiding-center drift Hamiltonian to 
describe  chaotic   particle   dynamics   during   intense   drift-resonant 
fluctuations. 



2. Demonstrated the relationship between the spectral-content of the 
fluctuations and the existence of global transport. Chaotic transport rates 
depend on both the amplitude and spectrum of the fluctuations. 

3. Explored a unique laboratory facility for the investigation of complex 
wave-particle dynamics of energetic trapped particles in a dipole magnetic 
field. CTX allows for the investigation of frequency chirped waves and 
nonlinear amplification processes due to the inward transport of phase- 
space holes. 

Several questions remain to be answered, and these are subjects of ongoing 
research. 
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OBSERVATION OF DRIFT-RESONANT FLUCTUATIONS IN 
THE COLLISIONLESS TERRELLA EXPERIMENT 

M. E. Maud and H. P. Warren 
Department of Applied Physics 
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ABSTRACT 

We report the first observation of drift-resonant instabilities of a laboratory 
plasma confined with a dipole magnetic field. The instabilities appear when a 
sufficiently energetic belt of electrons is created with microwave heating 
During heating, intense, quasi-periodic "bursts" of drift-resonant waves are 
excited and induce rapid electron transport. Immediately after the heatin^ is 
switched off, the instability's characteristics change and relatively lona-lastin^ 
rising tones are observed. In both cases, broad-banded multiple modes are 
associated with collisionless transport as required for chaotic transport in a 
dipole magnetic field. Absolute measurement of the wave spectrum at the onset 
of the transport allows direct test of the theory of transport induced bv intense 
waves. 

I. INTRODUCTION 

The "Collisionless Terrella Experiment", or CTX, is a laboratory 
experiment built at Columbia University in order to directly observe the 
collisionless radial transport of plasma trapped within a dipole magnetic field. 
Motivated by Hasegawa [1,2], CTX aims to characterize the wave intensity and 
spectrum required for the onset of chaotic transport and to observe the time 
evolution of plasma profiles undergoing rapid transport. 

Models of the energetic trapped-particle diffusion within planetary 
magnetospheres are fundamental to our understanding of plasma dynamics [3]. 
Nakada and Mead [4] described radiation belt diffusion in terms of the observed 
frequency spectrum of magnetic fluctuations associated with sudden impulses 
and sudden commencements. Birmingham [5] described radial diffusion 
induced by fluctuating convection electric fields. In the classic paper by Farley, 
Tomassian and Walt [6] the observed radial distribution of high-enerey protons 
in the inner radiation belt was understood only when inward and outward 
diffusion induced by drift-resonant magnetic fluctuations were included. 
Tomasian, et al. [7] noticed a strong correlation between the inner zone electron 
fluxes with E field fluctuations measured following substorms. Each of these 
models assume the preservation of the first two adiabatic invariants, fi, and J, 
during the chaotic dynamics of the third adiabatic, y/, (which is proportional to 
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the magnetic flux enclosed by a drift surface.) Warren, et al., [8] recently 
demonstrated the validity of this assumption, provided a sufficiently lar^e 
separation exists between the particle's bounce, cob, and drift, cod, frequencies. 
Under these conditions, the evolution of the plasma distribution function, F(i±, J. 
y/, t) can often be diffusive 

where 5 is a net particle source, T is polar precipitation time, and N( y/, t) = fdfi 
dJ F(ji, J,y/,t) is the total number of particles within a tube of unit flux, 5y/. As 
shown by Chan, et al. [9], the diffusion coefficient can be written in the 
quasilinear limit as 

D = |I ^CO-mCOd) m2\50\2 + ür\SAv (2) 

where l<5<2>l2 is the intensity of electric fluctuations, l<5A©l2 is related to the 
intensity of magnetic fluctuations, (co, m) are the fluctuation's frequency and 
azimuthal mode number, and (TC/2) 8(CO - m co^) is the quasilinear resonance 
function. For example, the energy-independent diffusion coefficient used 
successfully in Ref. 6 results from the spectrum of the m = 1 component of the 
magnetic fluctuations induced by Si and Sc events having \6A A2 «= or2 L4. 
(Here, L refers to the Mcüwain radial coordinate.) 

Observations of Pc5 drift-resonant pulsations [10] having higher azimuthal 
mode numbers, \m\ > 30, have motivated studies of drift-bounce particle 
resonances [9]. The interactions between these pulsations and barely trapped 0 + 
ring-current ions have been proposed to explain the significant loss of 5- to 17- 
keV ions during the recovery phase of geomagnetic storms [11]. 

The implications of Eqs. 1 and 2 need emphasis. For sufficiently intense 
wave-particle interactions, radial diffusion dominates sources and polar loses, 
(i.e. S and 1/T), and F evolves until dFld^f-Q. N(y/) is constant, and the local 
plasma density varies as n - I-4. Similarly, the pressure profile scales as p ~ 
1-20/3 > corresponding also to marginal stability for interchange and ballooning 
modes [12]. When/? varies more steeply than L~20/3, dFld\\f> 0, and internally- 
excited drift-resonant instabilities can drive hot plasma outward. When p varies 
less steeply than L_20/3, dF/d\f/< 0, and externally-excited fluctuations can lead 
to inward diffusion—further steepening the plasma's radial density gradient, dn 
/dL. 

The applicability of Eqs. 1 and 2 is being directly tested in the CTX 
experiment for a variety of electrostatic fluctuation spectra. The fluctuations in 
CTX do not simulate the fluctuations observed in the magnetosphere. Instead, 
they enable investigation of the fundamental process of collisionless radial 
transport in a controlled laboratory experiment. In Section II, we briefly 
describe the experimental apparatus and the formation of an energetic electron 
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belt with microwave heating. In Section III, we describe observations of drift- 
resonant instabilities exciting rapid radial transport of the energetic electrons. In 
Section IV, we discuss the implication of these observations to trapped-particle 
dynamics in planetary magnetospheres. We note that collisionless radial 
transport is observed only when wave-particle interactions are sufficiently 
intense and broad-banded. 

n. DESCRIPTION OF EXPERIMENT 

The CTX experiment consists of (1) a large nearly spherical vacuum 
chamber approximately 1.6 m in diameter, (2) an internal dipole magnetic 
suspended along the axis of one magnetic pole by a stainless-steel tube carrying 
electrical power and water cooling, and (3) a microwave plasma source which 
can be used to make either a "plasma stream" or a source of microwaves for 
direct heating of electrons, magnetically trapped by the dipole. External 
electromagnets can be used to apply an axial "bias" field and form a closed 
magnetic cavity for the dipole. For the experiments described here, we have 
operated the microwave source to maximize the production of an "artificial 
radiation belt" consisting of trapped electrons with energies between 1 and 40 
keV. These electrons have a collisional mean-free-path longer than 1,000 drift 
orbits about the equator, and they provide the ideal laboratory medium with 
which to study radial transport in dipole geometry. 

Fig.   1 shows the time history of a typical CTX discharge and the 
production  of an  energetic  electron belt.  The  discharge  duration  was 
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Figure 1. Several signals illustrating the time history of a typical CTX discharge 
containina an energetic electron belt. 
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Figure 2. Magnetic geometry of the dipole field showing belt location, probe 
locations, magnetic field strength (dotted lines), and field lines (solid lines). 

programmed to last approximately 0.5 sec, and the several signals represent the 
time history of the ion-saturation current to a Langmuir probe, the hydrogen ^as 
pressure, the forward and reflected microwave power, and the x-ray spectra as 
recorded by a krypton proportional counter. The experiment is fully computer 
controlled, and the gas pressure, pulse length, and heating power can be 
programmed independently for each discharge. For discharges similar to that 
shown in Fig. 1, intense fluctuations are observed both during the microwave 
heating and during the "afterglow" when the heating power has been switched- 
off. 

Multiple Langmuir probes are used to detect the drift-resonant waves and 
measure the background plasma parameters. For moderate and low hydrogen 

10 cm" gas fill pressures, P <2 x ICr6 Torr, the plasma density is less than 10 
and the background electron temperature is approximately 100 eV. The 
proportional x-ray detector is used to estimate the energy distribution of the en- 
ergetic electrons. As shown in Fig. 2, the energy distribution is non-Maxwellian 
and resembles the power-law distributions characteristic of wave heatina (in this 
case cyclotron heating) [13]. The intensity of the electron belt depends 
sensitively on the background hydrogen pressure, allowing experimental control 
of electron energy. Fig. 3 shows a quadrant of a cross-sectional view of the 
magnetic geometry of the experiment illustrating the location of the probes and 
energetic electron belt. Direct contact between the belt and a probe reduces the 
intensity of the energetic electrons and this technique is used to determine the 
belt's location. 
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Figure 3. Measured x-ray spectra emitted from the energetic electron belt 
showing the dependence of electron intensity on hydrogen fill pressure. 

HI. OBSERVATION OF DRIFT-RESONANT INSTABILITIES 

Fi2. 4 shows the probe fluctuations on a faster, 10 msec, time-scale. 
During the microwave heating, quasi-periodic "bursts" are observed; whereas, 
during the afterglow, the wave amplitude evolves more gradually. As shown, in 
Fi<*. 5, the quasi-periodic bursts correspond to (a) large negative reductions in 
the plasma floating potential and (b) rapid radial transport of electrons from the 
belt region. 

By using very high-speed data recorders, we have identified the drift- 
resonant instabilities inducing this rapid electron transport. Fig. 5 shows a 
frequency spectrogram of the instabilities occurring both during the microwave 
heating and during the afterglow. During the heating, the quasi-periodic 
pulsations consist of relatively wide-band signals ranging from 0.1 iMHz </< 2 
MHz. In contrast, the instabilities observed during the afterglow consist of a 
multi-mode collection of relatively coherent rising tones. Examination of the 
quasi-periodic bursts during heating also show a collection of rising tones. The 
difference in the frequency spectra can be linked to the energy of the electron 
belt as measured with the x-ray proportional counter.  When the average belt 
energy is relatively low, (£) - 1-10 keV, (such as found during the heating), the 
wave frequency is also relatively low. During the afterglow, when the cooler 
electrons scattering into the terrella's polar regions, (£) increases, and the 
frequency of drift-resonant instabilities also increase. The rate of rise of the 
frequency is linked to the average energy of the trapped electron belt. 
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Multiple probes are used to determine the azunuthal and radial structure of 
the drift-resonant waves. Fig. 6 shows the magnitude and phase of the 
correlation of two probes located on the same flux-surface. The two probes 
indicate that the waves propagate in the electron drift direction, and the wave 
spectrum consists of multiple azimuthal mode numbers, m, as well as multiple 
frequencies. 

These flucruations only occur in the presence of the energetic electron belt 
and we believe them to be related to drift-resonant hot electron interchange 
instabilities (HEI) [13,14]. During microwave heating, the electron energy 
distribution contains a large fraction of "warm" electrons with energies ran^n* 
from 1 to 10 keV. The instability frequency is less than the ion cyclotron 
frequency, coci, and the HEI instability is predicted to have rapid growth when 
profile of fractional density of energetic electrons (denoted by°o(y/)) has a 
sufficiently steep gradient, 

^     2.0- 

Time (msec) 

Figure 4. Frequency spectrograms showing both the quasiperiodic "bursts" 
during electron heating and the multiple rising tones observed during the 
afterglow. " ° 
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where ö5ci is related to the flux-tube average of COci. In the hot electron 
afterglow, the "warm" electrons are no longer reheated by the microwaves, and 
the average belt energy increases beyond 10 keV. The observed rising tones 
now represent the higher-frequency limit for HEI when Cü= m(cQd) » coci and 
the ions are approximately unmagnetized. In both limits, the energy to excite 
wave growth stems from the adiabatic cooling accompanying the radial 
transport induced by drift-resonant wave-particle interactions. The resulting 
diffusion (for broad-banded spectra) and wave-trapping (for larger more 
coherent spectra) ultimately leads to wave damping or saturation. 

TV. DISCUSSION 

We report observations of rapid collisionless radial transport induced by 
an intense spectrum of drift-resonant fluctuations. These results have 
implications for understanding the basic process of collisionless radial transport 
in a dipole maanetic field. First, transport in a dipole magnetic field seems to 
require multiple modes. This is a unique property of the dipole magnetic 
geometry resulting from the strong radial dependence of a particle's azimuthal 
drift frequency, cod ~ UL\ where L is the equatorial radius of a flux surface. 
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Figure 6. Magnitude and phase of the correlation between two probes positioned 
at "the same flux surface showing the excitation of multiple modes. 

Global transport can only occur with multiple modes since a particle does not 
remain correlated with a single wave as it diffuses radially. Secondly, the radial 
transport rate is fast. In CTX, large electron bursts lasting only 10's of drift 
periods are observed to cause significant transport. Finally, drift-resonant 
instabilities lead to transport causing self-stabilization and continuous, quasi- 
periodic bursting. This implies that the transport-inducing waves also decrease 
the radial pressure gradient of the electron belt—but do not destroy electron 
confinement altogether. For a dipole magnetic field, the marginally stable 
pressure profile scales like p « L-20/3, and it is likely the "bursts" of drift- 
resonant instabilities maintain this profile in opposition to the tendency of the 
microwave heating to steepen the belt pressure gradient. 

We have recently completed experiments quantifying the wave amplitude, 
drift-island size, and the temporal details of the energetic radial electron flux. 
These results will be reported elsewhere. Future experiments will use electron 
cyclotron emission to measure the evolution of the pressure profile and 
externally-imposed magnetic impulses to generate radial transport. 
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Observation of Chaotic Particle Transport Induced by Drift-Resonant Fluctuations 
in a Magnetic Dipole Field 
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The chaotic radial transport of energetic electrons trapped in a magnetic dipole field has been 
observed in a laboratory terrella. This transport is driven by multimode, drift-resonant plasma 
instabilities which are excited by the hot electron population. A transport simulation of energetic 
electrons interacting with a spectrum of electrostatic waves modeled on the measured fluctuations 
reproduces temporal features of the experimentally observed radial particle flux. 

PACS numbers: 52.25.Fi, 52.35.-g, 94.20.Rr 

Charged particles trapped in a dipole magnetic field 
undergo collisionless radial transport when nonaxisym- 
metric fluctuations break the third adiabatic invariant i//, 
which is proportional to the unperturbed magnetic flux. 
For example, random variations in the solar wind inten- 
sity produce perturbations of the Earth's geomagnetic and 
convection electric fields which have a broad fluctuation 
spectrum dominated by low-order azimuthal components 
[1]. Quasilinear models of the resulting transport have 
been used to account for the radial profile of radiation belt 
particles measured with satellites [2,3]. The more gen- 
eral problem of chaotic radial transport driven by nonlin- 
ear wave-particle resonances in a dipole magnetic field 
has been examined by Chan, Chen, and White [4] us- 
ing Hamiltonian methods. For spectra characterized by 
multiple discrete modes, the extent of the transport is re- 
stricted both in radius and in energy by the existence of 
specific wave-particle resonances, and the transport need 
not be quasilinear [5]. Recently, these techniques have 
been used to study the time evolution of proton phase 
space distributions in the Earth's magnetosphere induced 
by a given fluctuation spectrum [6]. 

In this Letter, we report the first observations of wave- 
induced chaotic radial transport in a laboratory terrella, the 
Collisionless Terrella Experiment (CTX). These observa- 
tions demonstrate a clear relationship between the wave 
spectrum and the induced resonant transport and provide 
the first laboratory test of Hamiltonian methods which can 
used to simulate magnetospheric transport. In addition, 
we observe wave-particle dynamics in an evolving nonlin- 
ear system which is a topic important to transport studies 
in other magnetically confined plasmas [7]. 

In CTX, an energetic population of trapped electrons 
is produced using electron cyclotron resonance heating 
(ECRH) [8]. The trapped electrons excite quasiperiodic 
"bursts" of drift-resonant instabilities which we identify 
as the hot electron interchange mode [9,10]. We find that 
during these bursts the measured amplitudes, frequencies, 
and azimuthal mode numbers of the drift-resonant fluc- 
tuations meet the conditions required for global chaotic 
particle transport. During these times, significantly en- 
hanced electron transport is observed with a gridded 

particle detector and this transport is strongly modulated 
at the drift frequency of the energetic electrons. At other 
times, when the instability wave spectrum does not satisfy 
the conditions for global chaos, no enhanced transport is 
observed. A numerical simulation of trapped electrons in- 
teracting with electrostatic waves modeled on experimen- 
tal measurements reproduces the modulation depth and 
frequency of the observed electron flux. 

The experiments reported here differ significantly from 
laboratory terrella previously built to aid the understand- 
ing of global magnetospheric structure in the presence of a 
steady solar wind [11]. The CTX device does not have a 
"simulated" solar wind, and the low-density, hot electron 
plasmas produced in CTX are much less collisional than 
terrella experiments related to the solar wind. The experi- 
ments reported here also differ from the "collisionless" 
terrella experiments conducted in ultrahigh vacuum by 
Il'in and Il'ina [12]. They demonstrated the breakdown 
of the first two adiabatic invariants at high energy and ob- 
served a reduced adiabatic limit during the application of 
axisymmetric perturbations. In contrast, we study chaotic 
particle transport of an energetic belt of trapped electrons 
induced by low-frequency, nonaxisymmetric waves which 
preserve the first two adiabatic invariants [13]. 

The CTX device consists of a dipole magnet sus- 
pended mechanically within an aluminum vacuum vessel 
approximately 1.4 m in diameter. The plasma is created 
and heated by applying a 1 kW pulse of 2.54 GHz mi- 
crowaves for approximately 1 sec. Just prior to and dur- 
ing the microwave pulse, hydrogen gas is puffed into the 
vacuum chamber to control the background neutral pres- 
sure. Typically, the initial pressure is ~0.3 /iTorr and 
rises during the discharge depending on the duration and 
number of gas puffs. After a period lasting a few tenths 
of a second, a ring of hot trapped electrons forms near the 
flux surface containing the fundamental cyclotron reso- 
nance at the equatorial plane of the dipole. This hot elec- 
tron population is similar to those created with ECRH in 
other magnetic traps [14]. Figure 1 shows the magnetic 
field geometry, the approximate location of the energetic 
electrons, and the representative placement of some of the 
probe diagnostics discussed below. 
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Gridded Particle Detector 
Langmuir Probes 

Axial Distance (m) 

FIG. 1. Magnetic field lines (solid) and |S| contours (dashed) 
in the CTX device. Heavy lines represent positions of movable 
probes. The shaded region indicates the approximate location 
of the energetic electron belt. 

The characteristics of the energetic electrons are deter- 
mined using a krypton proportional counter surrounded by 
a lead collimator aimed to view the equator of the dipole 
magnet. Bremsstrahlung emission at energies between 1 
and 60 keV is recorded with a histogramming, multichan- 
nel analyzer every 50 msec. The energy and intensity of 
the emission are strongly dependent on the neutral hy- 
drogen pressure. The most intense emission occurs when 
the pressure is ~3 yuTorr. The observed distributions 
are non-Maxwellian, characteristic of microwave-heated 
electrons [14]. The electrons with energies between 1 
and 10 keV are referred to as the "warm" population, 
and electrons with energies above 10 keV are referred to 
as the "hot" population. When the microwave power is 
switched off, the hot population persists for 5-20 msec, 
defining the discharge "afterglow." 

The drift-resonant fluctuations are observed with 
Langmuir probes and high-impedance floating potential 
probes situated at five locations within the vacuum vessel. 
The probes can be repositioned radially to examine 
the density and potential fluctuations at different flux 
surfaces. Simultaneous measurements from multiple 
probes are used to determine the azimuthal mode number 
and radial mode structure of the fluctuations. We take 
the amplitude of the floating potential oscillations to 
be representative of the electrostatic oscillations of the 
plasma waves. Data from the probes are digitized using 
transient recorders capable of storing 217 samples at rates 
of up to 100 MHz. The Langmuir probes are also used to 
estimate the spatial extent of the hot electron population 
since the x-ray emission is diminished as the probes 
contact the resonance region. 

The transport of energetic electrons is detected with a 
movable, gridded particle detector. The detector is a cube 
with a width of 7 mm and with an angular acceptance of 

1.5 sr. The grids are biased to repel ions and electrons 
with energies less than 100 eV, and the entrance aperture 
can be rotated with respect to the local magnetic field 
vector. For the measurements described here, the entrance 
was oriented perpendicular to the magnetic field excluding 
electrons with energies below approximately 3 keV due 
to gyroradius effects. Figure 1 shows the typical location 
of the gridded particle detector, slightly offset from the 
dipole's equatorial plane. 

When an intense hot electron population is produced, 
drift-resonant fluctuations (w ~ u>dh) are observed both 
while the ECR heating is on and in the afterglow. During 
heating, the fluctuations occur in quasiperiodic bursts 
lasting approximately 300-500 //.sec and having initial 
growth rate of -1/50 //.see. The rate at which the bursts 
appear is a function of the hot electron intensity: at 
the highest observed energies the bursts become almost 
continuous, while at lower energies the interval between 
bursts increases. During the afterglow, the drift-resonant 
oscillations have a slower growth rate, -1/100 /xsec, 
and persist for several milliseconds. At both times, 
the observed instabilities propagate azimuthally in the 
direction of the electron VB drift, are flutelike with a 
constant phase along a field line, and have a broad radial 
structure extending throughout the plasma. The saturated 
amplitudes of the floating potential oscillations present at 
both times are also similar, typically 100-200 V, with 
the larger amplitudes resulting from the most energetic 
electron populations. 

The time evolution of the spectral content of the waves 
was examined by computing the spectrogram of the 
potential fluctuations. Figure 2 shows the spectrogram 
of a floating potential probe signal taken at the end 
of the heating phase and extending into the afterglow. 
The quasiperiodic bursts consist of multiple frequencies 
typically below / < 2 MHz although some particularly 
intense bursts have reached frequencies as high as 5 MHz. 
These frequencies drift resonate with the warm electrons. 
The spectrogram also shows that the wave frequencies 
generally increase in time or "chirp." The rising tones 
are most evident during the intense coherent modes seen 
during the afterglow when the frequencies range from 
1 to 10 MHz, resonating with the hot electrons. The chirp 
rate during the afterglow is sensitive to the intensity of the 
hot electrons: at high intensity the chirp rate is fast, and at 
lower intensities the rise in frequency is slower. 

The Fourier transform of the correlation between 
Langmuir probes located at the same radius but separated 
in azimuth was computed in order to determine the 
azimuthal mode number of the various frequencies. The 
azimuthal mode number of the quasiperiodic bursts is 
usually limited to m = 1 except in the most intense bursts 
where modes with m = 2 are observed at high frequen- 
cies. During the afterglow m < 6 and several waves are 
observed simultaneously having the same m number. 

We believe the drift-resonant fluctuations observed 
in  CTX  are  related  to  the  hot  electron  interchange 
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1 2 
Time (msec) 

FIG. 2. Simultaneous measurements of drift-resonant fluctua- 
tions and energetic electrons near the end of the microwave 
heating pulse. Spectrogram (top) illustrates the multimode 
fluctuations with rising tones. Floating potential oscillations 
(middle) illustrate intense, quasiperiodic bursts correlated with 
rapid increase of electron flux (bottom) to the gridded particle 
detector. 

instability (HEI) that has been observed in ECRH heated 
magnetic mirror experiments [8,15]. The linear dispersion 
relation for low-frequency {co «: coci) electrostatic flute 
modes was developed by Krall [9] and extended to 
high-frequency modes (co ~ coci) by Berk [10]. These 
theories, which assume a monoenergetic distribution of 
hot electrons and slab geometry, predict instability when 
the energetic electron fraction exceeds some critical value. 

When the linear theory is extended to include a 
distribution of velocities and dipole geometry, it predicts 
unstable modes with real frequency co < mcodl,/2, where 
codh is the precessional drift frequency averaged over the 
distribution of energies. The fact that the real frequency 
of the instability is below the average drift frequency 
of the energetic electron population suggests a possible 
explanation of the chirping observed in the experiment. 
The instability drives transport in the lower energy 
particles first. The remaining distribution has a higher 
average energy which leads to a higher real frequency for 
the instability. 

Coincident with the bursts of wave activity during 
ECRH, we observe increases in the flux of energetic 
electrons to the gridded particle detector indicating rapid 

radial transport. As shown in Fig. 2, the electron current 
rises significantly above the background level during 
the bursts. No transport is associated with the high- 
frequency wave activity observed in the afterglow. At 
this time, the measured wave spectrum produces isolated 
bands of stochastic radial motion not capable of global 
transport. 

A feature of particular interest in Fig. 2 is the persistent 
modulation of the electron flux near the precessional drift 
frequency of the hot electrons. This type of behavior is 
suggestive of "drift echoes" which have been observed in 
satellite measurements of energetic particle transport [16]. 
Drift echoes result from the sudden injection of energetic 
particles at a narrow range of longitude. If the injected 
particles differ from the background population, each time 
they drift past the satellite a change in the particle flux is 
observed. 

We conjecture that a similar process is responsible for 
the modulation of the observed particle flux in CTX. 
As we will show, the experimentally measured wave 
spectra are consistent with the observation of chaotic 
particle motion. The decorrelation time, however, is long 
with respect to a drift period. Thus inhomogeneities in 
phase space propagate azimuthally and lead to temporal 
variations in the particle flux. 

The interaction of energetic electrons with the electro- 
static waves observed in the experiment can be described 
by the guiding center drift Hamiltonian [17] 

e<$>, H = 
1 2    9 
T>nep«B   + /J.B (1) 

where p\\ = v\\/B, and /n = mev\/2B is the first adiabatic 
invariant, the magnetic moment. The canonical vari- 
ables, ip\\,x) and (<P, <p), of the Hamiltonian are defined 
by B = Vi/f X Wcp = V^, where i\i = Msirrd/r, x = 

Mco&d/r2, M = So-Ko is the moment of the dipole mag- 
net, and (r, cp,6) are spherical coordinates. For simplicity, 
we examine only equatorial particles with p\\ = X = 0- 

The fluctuations present during the quasiperiodic bursts 
are modeled as a sum of m = 1 fixed-frequency traveling 
waves, 

<t>(ip,t) = ^<$>iCOs(cp - coit + <Pi) (2) 

The frequencies and relative amplitudes of the waves 
are taken directly from experimental observations. Each 
wave in the series forms a drift island of width &.1//1 — 
{2e<&ii//[/coi){/2, where \\i\ is the resonant surface defined 
by codiipi) = coi. When multiple drift-resonant waves 
have sufficiently large amplitudes, the islands will overlap 
and lead to chaotic transport [4]. This condition for chaos 
is visualized by constructing a Poincare surface of section 
by plotting particle coordinates, (if/, cp), at multiples of the 
mapping time defined by the least common multiple of the 
periods of the wave motion [18]. 

For a series of waves modeled on the initial part of an 
instability burst, drift resonances exist for electrons with 
energies between 3 and 10 keV (i.e., the warm electrons) 
from the center of the hot electron ring to the wall of 
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the vacuum chamber. Examination of the phase space 
portraits indicates that when the wave amplitude is above 
75 V there are no encircling Kolmogorov-Arnol'd-Moser 
(KAM) surfaces preventing global transport. This implies 
that for the wave spectra measured in the experiment the 
conditions for chaotic particle transport are met. 

In order to demonstrate the relationship between the 
modulation of the current and the spectral content of the 
observed fluctuations, we have simulated the time evolu- 
tion of the flux of electrons to a small region of phase space 
which represents the particle detector. In the simulation, 
we randomly selected an ensemble of 5000 particle tra- 
jectories that are at the "gridded particle detector" at time 
t = T. Using spectral information from the experiment to 
construct the electrostatic potential in the form of Eq. (2), 
the equations of motion are integrated backwards in time 
from t = T to t = 0, and the probability that the trajectory 
came from an assumed hot electron distribution, Fh(fx, ip), 
is computed. This process is repeated in order to compute 
the current as a function of time. 

0.2 0.4 0.6 
Frequency (MHz) 

FIG. 3. A comparison of experiment and a simulation which 
reproduces the gross frequency and depth of the modulation, 
(a) Frequency spectrum of the electrostatic waves, (b) detected 
energetic electron flux, and (c) Fourier transform of the detected 
flux. 

The result of one such simulation is presented in 
Fig. 3. Here the frequency spectrum, the energetic elec- 
tron flux to the detector, and the Fourier transform of the 
flux are shown for both the experiment and the simula- 
tion. The simulation reproduces the gross frequency and 
depth of the modulation present in the observed electron 
flux. However, since the phases of the measured waves 
and other profile parameters are unknown, the simulation 
cannot be expected to reproduce the particle flux exactly. 

In summary, radial transport driven by drift-resonant 
fluctuations has been observed in a laboratory terrella ex-« 
periment when the spectral characteristics of the observed 
fluctuations meet the conditions for chaotic particle mo- 
tion. Strong modulation in the observed electron flux is 
reproduced in a numerical transport simulation. 
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Hasegawa during the design of CTX and recognize the 
contributions of R. Singer and R. Maruyama. This work 
was supported by AFOSR Grant No. F4A96209310071, 
NASA Grant No. NAGW-3539, and NSF Grant No. 
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Wave-induced chaotic radial transport of energetic electrons 
in a laboratory terrella experiment 
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This paper reports the observation of wave-induced chaotic radial transport of energetic electrons in 
a laboratory terrella, the Collisionless Terrella Experiment (CTX) [H. P. Warren and M. E. Mauel, 
Phys. Rev. Lett. 74, 1351 (1995)]. Electron cyclotron resonance heating is used to create a localized 
population of energetic electrons which excite the hot electron interchange instability. The 
electrostatic fluctuations driven by this instability have time-evolving spectra which resonate with 
the precessional drift motion of the hot electrons. We have established that the amplitude, frequency, 
and azimuthal mode number of the observed instabilities meet the conditions for the onset of chaotic 
particle motion. Electron transport is observed with a gridded particle detector. Increases in the flux 
of energetic particles to the detector are well correlated with the presence of fluctuations which meet 
the conditions for global chaos. Greatly diminished transport is observed when the fluctuations lead 
to thin, radially localized bands of chaos. The flux of energetic electrons to the detector is strongly 
modulated. By examining time-dependent Hamiltonian phase space flows, the modulation is shown 
to be the result of phase space correlations. A transport simulation based on the Hamiltonian motion 
of energetic electrons reproduces the frequency and modulation depth of the observed electron flux 
and allows for comparison between the Hamiltonian and quasilinear descriptions of 
transport. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Chaotic radial transport plays a central role in the forma- 
tion and evolution of energetic particle populations trapped 
in planetary magnetospheres. Of primary importance to mod- 
els of the Earth's magnetosphere is transport driven by ran- 
dom variations in the solar wind intensity and the interplan- 
etary magnetic field which couple to the Earth's geomagnetic 
and convection electric fields.1 Sudden, large-scale variations 
which have a decay time on the order of a precessional drift 
period can lead to resonant wave-particle interactions and the 
breaking of the third adiabatic invariant, </>. The resulting 
transport is an essential mechanism for both the injection of 
particles into the magnetosphere and their acceleration.2 

The dynamics of energetic particle populations in the 
Earth's magnetosphere may be of practical importance. For 
example, sudden increases in relativistic electron fluxes as- 
sociated with geomagnetic storms are thought to be respon- 
sible for the failure of electronic components on space- 
craft.3,4 It has also been suggested that the precipitation of 
relativistic electrons can affect levels of stratospheric ozone 
by creating hydrogen and nitrogen oxides which catalytically 
destroy ozone.5 

Quasilinear models have been used to account for the 
radial profile of radiation belt particles measured with 
satellites6,7 as well as the stormtime enhancement and quiet 
time evolution of ring current particles.8-10 Quasilinear 
theory is, however, only an approximate statistical descrip- 
tion of many transport processes. Phase space structures of- 
ten persist even in the presence of symmetry-breaking per- 
turbations and the dispersion predicted by quasilinear theory 
is not observed.11 Even when phase space is almost com- 

a)Present address: Naval Research Laboratory, Washington, D.C. 20375. 

pletely stochastic, deviations from quasilinear theory are 
possible.12 This is especially relevant to many physically re- 
alized situations where the conditions necessary for the va- 
lidity of quasilinear theory are not strictly met. 

A more complete description of particle transport is 
given by the guiding center drift Hamiltonian.13,14 The cha- 
otic radial transport of ring current protons driven by mag- 
netospheric hydrodynamic waves has been examined by 
Chan, Chen, and White15 using Hamiltonian methods. For 
spectra characterized by multiple discrete modes, the extent 
of the transport is restricted both in radius and in energy by 
the existence of specific wave-particle resonances. A Hamil- 
tonian approach has also been used to model the enhance- 
ment of ring current protons due to impulsive stormtime 
variations in the Earth's convection electric field by Chen 
etal.l6-ls 

In an earlier paper,19 we reported the first observation of 
wave-induced chaotic radial transport in a laboratory terrella 
experiment, the Collisionless Terrella Experiment (CTX). 
One of the primary goals of CTX is to study the process of 
chaotic radial transport in dipole magnetic fields. In particu- 
lar, these experiments investigate the relationship between 
fluctuation spectra and models of energetic particle transport 
and provide the first laboratory tests of Hamiltonian methods 
which can be used to simulate magnetospheric transport. 
This paper presents a more complete description of the ex- 
perimental observations and reports the detailed results of 
numerical simulations which model transport processes ob- 
served in the experiment. 

In CTX, an energetic population of trapped electrons is 
produced using electron cyclotron resonance heating 
(ECRH).20 The trapped electrons excite quasiperiodic 
"bursts" of drift-resonant electrostatic fluctuations which we 
identify as the hot electron interchange instability.21'22 Al- 
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though the hot electron interchange instability is not excited 
naturally in planetary magnetospheres, the process by which 
nonaxisymmetric fluctuations induce chaotic radial transport 
of collisionless, trapped particles is independent of wave dis- 
persion characteristics. Instead, chaotic radial transport oc- 
curs only when the spectral and spatial characteristics of the 
fluctuations meet specific requirements, and these require- 
ments are documented in the laboratory using the hot elec- 
tron interchange mode. We note further that the drift- 
resonant fluctuations drive strongly chaotic radial motion 
which preserves the first two adiabatic invariants /x and jP 
Thus the experimentally observed transport processes are rel- 
evant to magnetically trapped magnetospheric particles drift- 
resonant with fluctuations which have low azimuthal mode 
numbers. 

By computing Poincare surfaces of section we find that 
during the instability bursts the measured amplitudes, fre- 
quencies, and azimuthal mode numbers of the drift-resonant 
fluctuations meet the conditions required for global chaotic 
particle transport. During the instability bursts significantly 
enhanced electron transport is observed with a gridded par- 
ticle detector. The observed transport is strongly modulated 
at frequencies related to the precessional drift-frequency of 
the energetic electrons. At other times, when the instability 
wave spectrum does not satisfy the conditions for global 
chaos, no enhanced transport is observed. 

The Poincare surfaces of section which model particle 
motion during the instability bursts show that phase space is 
strongly chaotic and indicate that quasilinear theory should 
be applicable. However, in order to model the spatial and 
temporal evolution of particle fluxes observed in the experi- 
ment, computer simulations using the guiding center drift 
Hamiltonian are necessary. The first of these simulations in- 
volves visualizing the Hamiltonian flow of phase space as a 
function of time so that the evolution of equatorial particle 
trajectories can be examined. By examining animations of 
phase space flows, the observed modulation in the electron 
flux can be understood in terms of phase-space correlations. 
The second simulation involves computing the flux of equa- 
torial particle trajectories to a small region of phase space 
which represents the particle detector. This simulation repro- 
duces the modulation depth and frequency of the experimen- 
tally observed electron flux. When the results of the Hamil- 
tonian transport simulation are compared with a simple 
quasilinear transport model we find that the predictions of 
the quasilinear model do not reproduce the experimentally 
observed modulations and underestimate the maximum par- 
ticle fluxes measured in the experiment. 

An interesting aspect of the experimental measurements 
we report here is the complicated evolution of the frequency 
content of the observed fluctuations. Both at the end of a 
quasiperiodic burst and during the afterglow, when the con- 
ditions for global chaos are not met, the wave-frequency in- 
creases in time or "chirps." Such behavior is often exhibited 
by evolving nonlinear systems and is a topic important both 
to nonlinear dynamics in general and to specific transport 
studies in other magnetically confined plasmas.24 

The Collisionless Terrella Experiment differs signifi- 
cantly from previous terrella experiments designed to study 

Large external bias coils 

FIG. 1. A schematic diagram of the Collisionless Terrella Experiment show- 
ing the vacuum vessel and the dipole magnet. 

the interaction of a steady solar wind with the geomagnetic 
field.25 For these experiments, the CTX device employed 
only a pure dipole magnetic field. CTX does not have a 
"simulated" solar wind and magnetic field coils that can be 
used to create a quasimagnetopause were not used. The plas- 
mas produced in CTX are low-density, hot electron plasmas 
which do not have the same magnetohydrodynamic proper- 
ties as those used to study the solar wind. The experiments 
reported here also differ from the "collisionless" terrella ex- 
periments conducted in ultra-high vacuum by II'in and 
H'ina.26'27 They demonstrated the breakdown of the first two 
adiabatic invariants at high energy and observed a reduced 
adiabatic limit during the application of axisymmetric pertur- 
bations. 

This paper is organized in the following manner. A de- 
scription of the experimental device and the plasma diagnos- 
tics is given in Sec. II. The results of the experiments related 
to the observation of hot electron plasmas, drift-resonant 
fluctuations, and chaotic radial transport are given in Sec. HI. 
The results of computer simulations which model the result- 
ing phase-space topology using Poincare surfaces of section, 
the evolution of Hamiltonian phase space flows, and the flux 
of energetic electrons to the particle detector are given in 
Sec. IV. Finally, a summary and discussion of the results are 
given in Sec. V. 

II. THE COLLISIONLESS TERRELLA EXPERIMENT 

The CTX experimental device consists of a dipole elec- 
tromagnet suspended mechanically in an axisymmetric alu- 
minum vacuum vessel 1.9 cm thick and 137 cm in diameter. 
As shown in Fig. 1, the magnet is supported by a stainless 
steel casing which houses the electrical and cooling leads. 
The strength of the dipole magnetic field is approximately 15 
kG at the face of the magnet and falls off to less than 50 G at 
the wall. The magnetic field lines and mod-ß surfaces of the 
dipole magnet used in CTX and are shown in Fig. 2. 

Plasmas are created by breaking down and heating hy- 
drogen gas using microwaves which resonate with the elec- 
tron gyromotion (this is electron cyclotron resonance heating 
or ECRH). The microwave source is a continuous wave mag- 
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FIG. 2. The magnetic field geometry of CTX. The solid lines represent 
magnetic field lines and the dotted lines represent surfaces of constant mag- 
netic field. The location of several plasma diagnostics and the approximate 
location of the hot electron ring are also shown. 

netron which has a peak output of 1500 W at a frequency of 
2.45GHz. The rate of heating is proportional to the amount 
of time that an individual electron is resonant with a wave 
and the heating will be strongest for particles mirroring along 
the surface defined by B0=5-875 G. The equatorial field 
strength of the dipole magnet has this value at a radial dis- 
tance of R0=R=*27 cm and this defines the center of the hot 
electron "ring" or "artificial radiation belt." 

Plasma diagnostics include a series of Langmuir and 
high impedance floating potential probes situated at five lo- 
cations throughout the vacuum vessel. The probes can be 
repositioned radially to examine the density and potential 
fluctuations at different flux surfaces. Multiple probe mea- 
surements allow the direction of propagation, the azimuthal 
mode number and radial mode structure of the observed fluc- 
tuations to be determined. Data from the electrostatic probes 
are digitized using 8-bit, high-speed transient recorders 
which are capable of storing 217 samples at rates of up to 100 
million samples per second. 

A krypton proportional counter is positioned at the mid- 
plane of the magnetic field and is used to measure hard x-ray 
emission at energies between 1-60 keV. The counter is col- 

limated to view the equatorial region of the dipole magnetic 
field. X-ray spectra are collected and stored at 50 ms inter- 
vals during the plasma discharge using a multichannel ana- 
lyzer and a histogramming memory unit. 

A movable gridded particle detector is located inside the 
vacuum chamber 13 cm above the equatorial midplane. The 
particle detector is supported by a metal rod which extends 
from the vacuum chamber wall and can be repositioned to 
measure particle flux at different radial positions. The detec- 
tor consists of a small square metal box 1 cm on a side with 
a 0.23 cm2 opening centered on one face. The box contains a 
series of grids which are biased to repel ions and electrons 
with energies less than 100 eV. 

The entrance aperture of the probe can be rotated with 
respect to the local magnetic field vector. For the measure- 
ments described here, the entrance was oriented perpendicu- 
lar to the magnetic field. Gryoradius effects determine the 
minimum particle energy detected by the probe. The mini- 
mum detectable energy ranges from 700 eV to 2.3 keV de- 
pending on the radial position of the probe. Since the probe 
is located above the midplane of the magnetic field, only 
particles with a sufficiently small equatorial pitch angle will 
be detected by the particle detector. The maximum pitch 
angle ranges from 54° to 65°. 

III. EXPERIMENTAL OBSERVATIONS 
The operation of the Collisionless Terrella Experiment is 

relatively simple. After the dipole electromagnet is turned 
on, hydrogen gas is puffed into the vacuum chamber and 
heated with microwaves. After a specified time the micro- 
wave power is turned off and the hot electron "afterglow" of 
the plasma discharge can be examined. Computer controlled 
timing signals define intervals when the high speed transient 
recorders store diagnostic signals. 

A. Characterization of hot electron plasmas 

The intensity of the hot electron population is character- 
ized by the hard x-ray emission produced by electron-ion and 
electron-neutral bremsstralung. A fraction of these x-rays are 
detected with the krypton proportional counter. The mea- 
sured x-ray spectra indicate the formation of a magnetically 
trapped, energetic electron population with energies between 
1-60 keV. The observed distributions are non-Maxwellian 
and more closely resemble power-law distributions often as- 
sociated with wave-heated space plasmas.28 There are two 
distinct subpopulations within the electron distribution. 
There is a "warm" population with energies between 1-10 
keV, and a "hot" population, which is more sensitive to 
variations in background pressure, with energies above 10 
keV. 

As shown in Fig. 3, the distribution of energetic elec- 
trons is dependent on the hydrogen fill pressure. Whenever 
the peak pressure falls either above or below the optimal 
value the hot electron population is reduced. A similar de- 
pendence of hot electron intensity on background pressure 
has been reported in other ECR heated magnetic mirror 
experiments. 

The spatial extent of the energetic electron population is 
established by using a Langmuir probe as a "limiter" or 
"skimmer" and moving it into the resonance region until the 
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FIG. 3. Hard x-ray emission as a function of hydrogen fill pressure. If the 
peak pressure falls above or below the optimal value, the hot electron energy 
will be reduced. 

x-ray emission is significantly diminished. Plasmas without a 
significant hot electron population can also be created by 
decreasing the dipole's magnetic field. When the field 
strength is sufficiently small, the resonant surface coincides 
with the surface of the magnet and no hard x-ray emission is 
observed. 

B. Observation of drift-resonant fluctuations 

When a sufficiently intense hot electron population is 
present, electrostatic fluctuations which resonate with the 
precessional drift-motion of the hot electrons (w~codh) are 
detected by the Langmuir probes. Fluctuations are observed 
both while the ECR heating is on and in the afterglow of the 
plasma discharge, when the heating has been turned off. 

While the ECR heating is on, quasiperiodic bursts of 
drift-resonant fluctuations with a growth rate of ~50 fis and 
which last approximately 300-700 /AS are observed. The rate 
at which the instability bursts appear is a strong function of 
the hot electron energy: at the highest observed energies the 
bursts become almost continuous, at lower energies the time 
between bursts increases to intervals as long as several mil- 
liseconds. During the afterglow, the observed fluctuations 
have a slower growth rate, ~100 fis, and persist for several 
milliseconds. 

During both the ECRH and in the afterglow, the ob- 
served instabilities propagate azimuthally in the direction of 
the curvature and VB drift motions of the electrons. The 
observed instabilities are flute modes with no structure along 
a field line and have only a weak radial dependence. The 
saturated wave amplitudes observed during both the ECRH 
and the afterglow are also similar, typically 100-200 V, with 
the larger amplitudes resulting from the most energetic elec- 
tron populations. 

The time evolution of the frequency content of the ob- 
served fluctuations can be examined by computing the time- 
frequency domain (TFD) of the Langmuir probe signals. One 
of the simplest and most intuitive algorithms for computing 
the    TFD    is    the    short-time    Fourier    transform    or 
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FIG. 4. The flux of energetic electrons to the gridded particle detector, the 
measured floating potential, and a color contour plot of the corresponding 
spectrogram. The observation of transport with the particle detector is cor- 
related with the presence of fluctuations which satisfy the conditions for 
global chaos. The measurements begin during the ECRH phase and extend 
into the afterglow of the plasma discharge. 

Microwave Heating- 

1.60 1.80 2.00 2.20 
Time (msec) 

2.40 

FIG. 5. A detailed spectrogram of the first instability burst shown in 4. For 
the first 450 ps of the burst the fluctuations are incoherent and resonate with 
the "warm" part of the energetic particle population and enhanced transport 
is observed. For the final 200 ps the fluctuations are more coherent, the 
instability "chirps" upward in frequency, and the transport is diminished. 
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spectrogram.30 An example of a discharge in which drift- 
resonant fluctuations have been observed is shown in Fig. 4 
where a floating potential probe signal and its spectrogram 
are displayed. The measurement was taken at the end of the 
heating phase and extends into the afterglow. This Fourier 
analysis indicates that the quasiperiodic bursts consist of in- 
coherent, broad-band fluctuations with frequencies typically 
below 2 MHz, although some particularly intense bursts have 
frequencies as high as 5 MHz. The instabilities observed 
during the afterglow are more coherent than those observed 
during the ECRH and have a higher range of frequencies, 
/-1-12MHZ. 

Inspection of the spectrogram shown in Fig. 4 reveals 
that the wave frequency evolves in a very complicated way 
both during the ECRH and in the afterglow. Fig. 5 shows the 
spectrogram of a single burst in detail and it is clearly seen 
that the quasiperiodic fluctuations consist of two different 
stages. During the initial stage of the burst, lasting 300 /xsec, 
the fluctuations have frequencies below 1 MHz and appear to 
be incoherent. At the end of the burst, the fluctuations be- 
come more coherent and rapidly increase in frequency or 
"chirp." During the afterglow only coherent, rising tone 
fluctuations are observed. 

The fluctuations observed during the ECRH also differ 
from those observed in the afterglow in terms of their azi- 
muthal mode number. During the quasiperiodic instability 
bursts, the azimuthal mode number is usually limited to 
m = l, except in the most intense bursts when some high- 
frequency, m = 2 modes are observed. In the afterglow, 
m =s 6, and there are often multiple waves with the same azi- 
muthal mode number present simultaneously. 

The drift-resonant fluctuations observed in the experi- 
ment are related to the hot electron interchange instability 
that has been observed in other ECR heated magnetic mirror 
experiments.31'32 The linear theory of the hot electron inter- 
change, assuming slab geometry and a monoenergetic distri- 
bution of electrons, was developed by Krall for o)< CJC

21
 and 

by Berk22 for w~wc, and the observed fluctuations are gen- 
erally similar to those predicted by these simple theories. 

C. Observation of energetic electron transport 

Coincident with the bursts of wave activity observed 
during the ECRH are increases in the flux of energetic elec- 
trons to the gridded particle detector. The characteristics of 
the transport measurements suggest a definite relationship 
between the spectral content of the waves and the observed 
energetic particle flux. As shown in both Fig. 4 and Fig. 5, 
the electron current rises significantly above the background 
level during the low-frequency, incoherent phase of the qua- 
siperiodic bursts. Transport is diminished during the coherent 
phase of a burst when the frequency of the instability 
"chirps" upward. No enhanced transport is associated with 
the high-frequency, coherent modes observed during the af- 
terglow. Also note that the observed energetic electron flux is 
strongly modulated at frequencies related to the precessional 
drift-frequency of the "warm" electrons. The connection be- 
tween the fluctuation spectrum and energetic electron trans- 
port will be examined in detail in the next section. 

IV. WAVE-INDUCED PARTICLE TRANSPORT 

The interaction of energetic electrons with the drift- 
resonant electrostatic waves observed in the experiment can 
be described by the guiding center drift Hamiltonian14: 

mec cB 
—pf^ + /xT-c<D, (1) 

where me and e are the electron mass and charge, c is the 
speed of light, B is the magnitude of the dipole magnetic 
field, fi=mv2/2B is the magnetic moment, p\\ = v\\IB, and 
<3> is the electrostatic potential. For a curl-free magnetic field, 
the canonical coordinates of the guiding center drift Hamil- 
tonian, (p|| ,x), and {ip,(p), are essentially the magnetic coor- 
dinates defined by: B=V</rxV<p = V^. The function 
if/=M sin2 6/r is proportional to the magnetic flux bounded by 
a field line and the function /v = M cos 61 r2 is related to the 
distance along a field line. Note that M=BQR.\ is the mo- 
ment of the dipole magnet and (r,<p,0) are spherical coordi- 
nates. Also note that the guiding center drift Hamiltonian is 
appropriate since energetic electrons produced in the experi- 
ment are nonrelativistic. 

When the particle motion is confined to the equatorial 
midplane of the magnetic field, p| = x = 0, B = B(ip), and the 
equations of motion are reduced to a particularly simple 
form: 

dip 

dt 

d<p 

dt 

d3% _   d$> 

dcp d<p 

c dB (2) 

These are the equations that will be considered in this paper. 
For equatorial particles the precessional drift frequency is: 

°dh- 
3c/xB       3/z.ßo 

eifi ,ünÄ 2' (3) 

where Q,0 = eB0/mec and R is the particle's radial position. 
In general, particles will have a finite parallel velocity and 
will not be confined to the equatorial midplane. However, the 
precessional drift-frequency is only weakly dependent on 
pitch angle2 and the results presented here would not be sig- 
nificantly altered by including parallel velocity. 

The experimental observations described in the previous 
section indicate that the observed fluctuations can be mod- 
eled as a sum of traveling waves of the form: 

$0  v <5(<P^)=-7=Z amlcos(m<p-(Dit+(p,), (4) 

where 5^=Em/|am/|
2. The relative amplitudes, azimuthal 

mode numbers, frequencies, and phases are determined from 
the Fourier analysis of experimentally measured Langmuir 
probe signals. 

For a single electrostatic wave the island half-width, Atf/, 
at the resonant surface defined by oji—mu)dh(/j,,ipl

r
m) = 0, is 

given by the solution to the equation: 

(A<A): 1 + 
Aip 

3#, lm] 

2c<&o<A;m 
= 0. (5) 

}dh 
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FIG. 7. A spectrum of waves taken from experimental measurements of 
fluctuations observed during the ECRH and a corresponding Poincare sur- 
face of section. The fluctuations spectrum leads to chaos in 1// over the radial 
extent of the plasma. The magnetic moment, fi, is chosen so that /xß0 = 4 
keV; other parameters are <t>0= 150 V, N= 10, and TM= 100 /is. Note that 
the surface of section is plotted in (R,<p) coordinates. 

When the islands are small they are approximately symmet- 
ric and the island half-width is given by A</f 
=*(2c<t>0i//rlm/a)dh)m. When multiple drift-resonant waves 
with sufficiently large amplitude are present, islands will 
overlap and lead to chaotic transport. 

The topological properties of particle trajectories can be 
determined by constructing the Poincare surface of section 
which is formed by plotting (t//,<p) at multiples of the map- 
ping time. For a spectrum of waves, the mapping time is the 
least common multiple of the periods of the wave motion: 
7,

M = LCM(7'; = 2i77«/).
33 In practice, the frequencies are 

rounded off to keep TM from becoming too large. The equa- 
tions of motion are integrated using the Gragg-Burlish-Stoer 
implementation of the Richardson extrapolation.34 

A. Chaos during the afterglow 

An example of a fluctuation spectrum used to model the 
electrostatic potential observed during the afterglow is 
shown in Fig. 6a. For electrons with energies above 
IJLBQ

1
** 10 keV this spectrum leads to resonant wave-particle 

interactions. However, as the Poincare surface of section 
shown in Fig. 6b illustrates, the thin bands of chaos in ijj are 
limited to the proximity of the hot electron ring and do not 
extend out to the radial location of the gridded particle de- 
tector unless the amplitude of the potential fluctuations is 
very large. 

B. Chaos during the quasiperiodic bursts 

A number of model fluctuation spectra have been con- 
structed to model the potential fluctuations observed during 
the ECRH. For the wave spectrum shown in Fig. 7a, which is 
taken from the initial part of an instability burst, drift- 
resonances exist for electrons with energies between 1-10 
keV (i.e., the "warm" electrons) from the center of the hot 
electron ring to the wall of the vacuum chamber. As shown 
in Fig. 7b, this spectrum of waves leads to chaos in ip over 
the radial extent of the plasma. Examination of the phase 
space portraits indicates that when the wave amplitude is 
above **75 V, there are no encircling Kolmogorov-ArnoFd- 
Moser (KAM) surfaces35 preventing global transport. 

As shown in Fig. 5, the quasiperiodic bursts observed 
during the ECRH evolve into more coherent modes that rap- 
idly chirp upward to higher frequencies. By the end of a 
burst these modes have begun to resemble modes observed 
in the afterglow. Coincident with the transition from incoher- 
ence to coherence, the observed particle flux to the detector 
begins to decline. This is understandable in light of the Poin- 
care surfaces of section shown in Fig. 6 and Fig. 7. The 
higher frequency waves lead to chaos that is confined to 
narrow regions of phase space. This observation also sug- 
gests that there is a complicated relationship between the 
frequency content of the instability, particle transport, and 
the coherence of the fluctuations. 

4190        Phys. Plasmas, Vol. 2, No. 11, November 1995 H. P. Warren and M. E. Mauel 



C. Hamiltonian phase space flows 

The transport associated with the quasiperiodic bursts 
observed during the ECRH is strongly modulated. This type 
of behavior is suggestive of "drift echoes" which have been 
observed in satellite measurements of energetic particle 
transport.3 '37 Drift echoes result from the sudden injection of 
energetic particles at a narrow range of longitude. If the in- 
jected particles differ from the background population, each 
time they drift past the satellite a change in the particle flux 
is observed. As we will show, a similar process is responsible 
for the modulation of the observed particle flux in CTX. The 
particle motion in CTX is chaotic but the decorrelation time 
is long with respect to a drift period. Thus inhomogeneities 
in phase space propagate azimuthally and lead to temporal 
variations in the observed particle flux. 

The Poincare surface of section, while a useful way of 
obtaining topological information about phase space, does 
not provide sufficient information about the temporal evolu- 
tion of particle trajectories to understand the modulation ob- 
served in the electron flux. The evolution of phase space, 
however, can be examined by computing the Hamiltonian 
phase space flow. For a 1 \ degree of freedom Hamiltonian, 
flows can be computed by dividing the (tff,<p) plane into an 
MXM grid and evolving the equations of motion for each 
grid point. Since radial transport is of interest here, trajecto- 
ries initially on the same radial flux surface are assigned the 
same color. In order to maintain a uniform distribution of 
grid points, the equations of motion are integrated backwards 
in time. 

An example of a Hamiltonian phase space flow is shown 
in Fig. 8 where six "frames" from an animation of the phase 
space flow are displayed. The electrostatic potential used in 
the equations of motion is the same as was used to compute 
the Poincare surface of section shown in Fig. 7. Clearly evi- 
dent is the relatively slow, inhomogeneous mixing of phase 
space. 

To understand how these pictures relate to the experi- 
mental observations, recall that the use of ECRH leads to a 
strong radial gradient in the hot electron density. The differ- 
ent colors used to identify a phase space element's initial 
radial position could also represent the initial particle density 
of the phase space element. Thus a consequence of the rela- 
tively slow mixing of phase space is that the density of par- 
ticles reaching the detector has a very complicated time de- 
pendence. These simulations indicate that it is this process 
that is responsible for the modulation of the flux of electrons 
to the gridded particle detector observed in the experiment. 

D. Hamiltonian transport simulation 

In order to demonstrate the relationship between the cha- 
otic mixing of phase space and the modulation of the ener- 
getic electron flux more directly, a numerical simulation 
which computes the time-evolution of the flux of energetic 
electrons to a small region of phase space has been per- 
formed. The objective of the simulation is to reproduce the 
gross frequency and amplitude of the modulation present in 
the observed energetic electron flux. 

In the code, an ensemble of particle trajectories that are 

at the "gridded particle detector" at time t = T are randomly 
selected. The values for i// and <p are selected randomly from 
a region of phase space determined by the position and the 
area of the probe. As with the Poincare surfaces of section 
and the Hamiltonian phase space flow, spectral information 
from the experiment is used to construct the electrostatic 
potential in the form of Eq. (4). However, in order to model 
the growth of the wave the spectrum is modified to include a 
time-dependent wave amplitude: ®o-*®o(t) 
= <E>o tanh(r2f2), where r is the growth time of the fluctua- 
tions. To increase computational efficiency, the equations of 
motion are integrated backwards in time from t=T to t-0 
rather than forward in time. 

To model the finite extent of the experimental device, 
trajectories that move beyond the vacuum chamber wall, 
R>RW, are considered lost. Particles may also be lost if they 
strike the metal column which extends from the wall to sup- 
port the gridded particle detector or the detector itself. In the 
simulation, any trajectory which crosses the location of the 
probe, R>Rd and <p=tpd, has a finite probability of being 
removed. 

At r = 0 the probability that a trajectory came from a 
model hot electron distribution, Fh(/ub,t//), is computed. The 
hot electron distribution is assumed to be of the form: 

Fh(fi,i/f,t=0) = Nha(i/f,t = 0)f(ti), (6) 

where Nh=nhV is the number of particles within a flux tube 
of volume V. The initial spatial dependence of the hot elec- 
tron distribution is taken to be: 

a(i/,,t = 0) = a(iJ,/<p0-i/,d/4,0)
b(2-i/,/4,0y (7) 

where t//0 = B0Rl and if/d=B0Rl/Rd. Note that two of the 
three parameters a, b, and c are chosen so that a(i//0)= 1 
and a'(i//0) = 0. The remaining parameter can be adjusted to 
change the steepness of the profile. The magnetic moment /A 

is chosen from an exponential distribution: 

/(/*)=—exp(-/i//i0), (8) 

To model the energy resolution of the probe, only trajectories 
with /iB0 e [£min ,£max] are integrated. 

If a trajectory is determined to have come from the hot 
electron ring, it is used to construct the current: 

JV 
1   ^-, 

I = enhA(v) = enhA-^p.2j vit (9) 

where \ mev^ = /x/SC^) for the /th particle andA is the area 
of the probe. This process is repeated to construct /(/). 

The result of one such simulation is presented in Fig. 9 
where it is compared with the corresponding energetic elec- 
tron flux measurement from the experiment. The simulation 
was run with a randomly selected ensemble of 5000 particle 
trajectories. Also shown in Fig. 9 is the Fourier transform of 
the simulated and measured electrostatic fluctuations as well 
as the Fourier transform of the simulated and measured en- 
ergetic electron flux. The simulation successfully reproduces 
the frequency of the observed modulations as well as the 
relative amplitude. Since the phases of the measured waves 
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FIG. 8. Six "frames" from an animation of the Hamiltonian phase-space flow which show the slow, inhomogeneous mixing of phase space. The magnetic 
moment, p, is chosen so that /xS0 = 4 keV (tJh = 334 /JS). T = 10 /IS, $0= 150 V and M= 128. Note that phase space is plotted in (R,<p) coordinates. 

and other profile parameters are unknown, the simulation 
cannot be expected to reproduce the temporal evolution of 
the particle flux exactly. 

E. Quasilinear transport simulation 

In this section we explore the relationship between the 
Hamiltonian and quasilinear descriptions of chaotic particle 
transport. Quasilinear theory models transport as a random 
walk across flux surfaces with each step uncorrelated with 
the previous one. As is demonstrated by the phase space 
flows and the flux simulation, this does not describe the 
transport processes observed in the experiment. There are 
several reasons for this, the most important being that the 
measured fluctuation spectra have a finite bandwidth which 
allows particle trajectories to be correlated over several drift 
periods. Also, the fluctuation spectra may not lead to com- 
plete stochasticity. The presence of phase space structures, 
such as the islands shown in Fig. 7b, can increase the corre- 
lation time of particle trajectories." 

We have written a simple numerical simulation in order 
to compare the predictions of Hamiltonian and quasilinear 
descriptions of particle transport. In the code the simulated 
electron current is approximated by: 

I(t)~eAj d3vvFh(pi,<pd,t)~eAn0a{i},d,t)(v),    (10) 

where (v) is the average velocity of particles reaching the 
detector. The function a(if/,t) evolves according to a 
diffusion-like equation: 

da       d   -     da 
•0(<A-^), (ID 

where D^ is the diffusion coefficient averaged over reso- 
nant velocities. The second term in Eq. (11) models particle 
losses due to the probe and d(4>- ijjd) is the unit step func- 
tion. The boundary conditions are set so that the solution 
goes to zero at the wall and the magnet casing. The initial 
distribution for a is given by Eq. (7). 

The quasilinear diffusion coefficient for the model fluc- 
tuation spectrum used in the Hamiltonian simulation [Eq. 
(4)] is given by: 

D^— 
7r/n2c2<Dg 

2^     tl Wmi\2S(o)i-m<odh(/i,i//)),       (12) 

where S((oi-m(odh) is the Dirac delta function. The diffu- 
sion coefficient averaged over resonant velocities yields 
D^. Alternatively, the diffusion coefficient can be deter- 
mined from integrating the equations of motion as was done 
by Chen et al.xl In this case the diffusion coefficient is com- 
puted using the formula: 

D^,^— 
((Mt)-MO))2)   ((Mt)-MO)))2 

it it (13) 

The agreement between these two approaches is generally 
good and the numerically determined value is used in the 
simulation. 

The result of a single run representative of the quasilin- 
ear simulation is shown in Fig. 10 where it is compared with 
the result from the corresponding Hamiltonian simulation. 
Significantly, the predictions of the quasilinear model do not 
reproduce the experimentally observed modulations and un- 
derestimate the maximum particle fluxes measured in the 
experiment. 
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FIG. 9. A comparison of experiment and a simulation which reproduces the 
gross frequency and depth of the modulation, (a) Frequency spectrum of the 
electrostatic waves, (b) detected energetic electron flux, and (c) Fourier 
transform of the detected flux. 

The failure of quasilinear theory to reproduce the salient 
features of the observed transport seems to be inconsistent 
with the strong chaos evident in the Poincare surface of sec- 
tion shown in Fig. 7. We can reconcile this apparent discrep- 
ancy by considering the energetic electron flux predicted by 
the Hamiltonian simulation averaged over a magnetic flux 
surface. The result of such a calculation is presented in Fig. 
10 where it is compared with the corresponding "point" re- 
sult as well as the quasilinear result. The averaged energetic 
electron flux from the Hamiltonian simulation is very close 
to the quasilinear result indicating that the spatial resolution 
of the probe plays an important role in the deviations from 
quasilinear theory observed in the experiment. 

V. SUMMARY 

This paper reports the experimental observation of 
wave-induced chaotic radial transport of energetic electrons 
in a laboratory terrella. In the experiment ECRH is used to 
create a localized population of energetic, magnetically 
trapped electrons. The trapped electrons excite quasi- 
periodic, drift-resonant fluctuations which are identified as 
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FIG. 10. A comparison of the energetic electron current computed from 
Hamiltonian and quasilinear models. The predictions of the quasilinear 
model lack the large-scale modulations seen in the experimental data and 
underestimate the maximum observed particle fluxes. There is, however, 
good agreement between the result of the Hamiltonian simulation averaged 
over a magnetic flux surface and the quasilinear simulation. 

the hot electron interchange instability. Increases in the flux 
of energetic particles to a gridded particle detector are well 
correlated with the presence of the fluctuations. The mea- 
sured particle flux is modulated at frequencies related to the 
precessional drift motion of the energetic electrons. 

This paper has also presented the detailed results of nu- 
merical simulations based on the guiding center drift equa- 
tions which model transport processes observed in the ex- 
periment. Most significantly, the simulations confirm that the 
observed transport is the result of nonlinear wave-particle 
interactions: transport is only observed when the wave- 
spectrum meets the conditions for global chaos; no transport 
is observed when the fluctuations lead to thin, radially local- 
ized bands of stochasticity. 

The results of Hamiltonian simulations which explore 
the temporal details of the observed particle transport have 
also been presented. Animations of phase space flows have 
shown that the modulation of the flux of energetic electrons 
to the gridded particle detector can be understood in terms of 
the chaotic mixing of phase space. The relationship between 
chaotic mixing and the experimental measurements has also 
been demonstrated by a simulation which models the flux of 
energetic particles to a small region of phase space. The 
simulation reproduces the frequency and depth of the ob- 
served modulation. In contrast, quasilinear models of trans- 
port do not reproduce the modulation of the particle flux and 
underestimate the maximum particle fluxes observed in the 
experiment. 

The results presented in this paper suggest that it may be 
worthwhile to model the temporal evolution of radiation belt 
particles in the magnetosphere using Hamiltonian methods. 
The results of such a study would better define the role that 
wave-induced chaotic radial transport plays in the dynamics 
of energetic particles in the magnetosphere. One candidate 
for driving drift-resonant chaotic radial transport similar to 
that observed in the experiment is low-m Pc 5 waves which 
have periods of 150-600 s. These ultra-low-frequency waves 
would drift-resonate with electrons with energies of 4-60 
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MeV at geosynchronous orbit and thus are strongly relativ- 
istic. Drift-resonant protons at geosynchronous orbit would 
have energies between 1-5 MeV but would be nonrelativis- 
tic. 

Finally, we recognize that impulsive perturbations are of 
primary interest in magnetospheric transport of energetic par- 
ticles but we stress that the modeling techniques used in this 
paper are clearly not restricted to wave-like perturbations. As 
mentioned in the introduction, Chen et dl.n have modeled 
stormtime ring current proton enhancement due to impulsive 
variations in the Earth's convection electric field using the 
guiding center drift equations. They compared the dispersion 
averaged over a magnetic flux surface with the predictions of 
quasilinear theory and agreement between the two ap- 
proaches was generally good. However, our results suggest 
that the averaged dispersion may not accurately represent the 
temporal evolution of energetic particle fluxes in localized 
regions of phase space. 
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Observation of wave-induced chaotic radial transport in a laboratory 
terrella experiment* 
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The wave-induced chaotic radial transport of energetic electrons has been observed in a laboratory 
terrella, the Collisionless Terrella Experiment (CTX) [H. P. Warren and M. E. Mauel, Phys. Plasmas 
2, 4185 (1995)]. In the experiment electron-cyclotron-resonance heating (ECRH) is used to create 
a localized population of trapped energetic electrons which excite drift-resonant electrostatic 
fluctuations. Measurements with multiple high-impedance floating potential probes are used to 
determine the amplitude, frequency, and mode structure of the observed fluctuations. Energetic 
electron transport is observed with gridded particle detectors. Poincare surfaces of section indicate 
that increases in the flux of energetic electrons to the detectors occur only when fluctuations which 
meet the conditions for global chaos are present. Quasilinear transport simulations do not reproduce 
several important features of the experimental measurements. In contrast, Hamiltonian simulations 
reproduce many of the salient temporal characteristics of the experimental measurements and 
indicate that the persistence of phase-space correlations plays an important role in the energetic 
electron transport observed in the experiment. © 7996 American Institute of Physics. 
[S1070-664X(96)91405-X] 

I. INTRODUCTION 

Understanding the transport of energetic particles is a 
fundamental problem of laboratory, astrophysical, and space 
plasmas. Of particular interest is transport in collisionless 
plasmas driven by non-linear wave-particle resonances. For 
example, chaotic radial transport which preserves the first 
two adiabatic invariants /J. and J but breaks \p is an essential 
mechanism for both the injection of particles into the Earth's 
magnetosphere and their acceleration.1 This transport is 
driven by sudden, large-scale perturbations in the Earth's 
geomagnetic and convection electric fields caused by varia- 
tions in the solar wind and interplanetary magnetic field.2 

Previously we reported the first observation of wave- 
induced chaotic radial transport in a laboratory terrella ex- 
periment, the Collisionless Terrella Experiment (CTX).3,4 

One of the primary goals of CTX is to study the process of 
chaotic radial transport in dipole magnetic fields which pre- 
serves the first two adiabatic invariants /x and J. In particu- 
lar, these experiments investigate the relationship between 
fluctuation spectra and models of energetic particle transport 
and provide the first laboratory tests of Hamiltonian methods 
which can be used to simulate transport in collisionless plas- 
mas. 

In the experiment electron-cyclotron-resonance heating 
(ECRH) is used to create a highly localized population of 
magnetically trapped energetic electrons.6 While the ECRH 
is on, the energetic electrons excite quasiperiodic bursts of 
electrostatic fluctuations which resonate with the preces- 
sional drift motion of the trapped particles. Drift-resonant 
electrostatic waves are also observed during the afterglow of 
the plasma discharge, when the ECRH has been turned off. 

*Paper 2IA1, Bull. Am. Phys. Soc. 40, 1666 (1995). 
^vited speaker. 
a,Present address: Naval Research Laboratory, Washington, DC 20375. 

During both times, the observed fluctuations have a compli- 
cated time-dependent frequency content. 

By computing Poincare surfaces of section we find that 
during the instability bursts the measured spectral character- 
istics of the drift-resonant fluctuations meet the conditions 
required for global chaotic particle transport. Coincident 
with the instability bursts, energetic electron transport is ob- 
served with gridded particle detectors located outside the hot 
electron ring. The observed transport is strongly modulated 
at frequencies related to the precessional drift-frequency of 
the energetic electrons. During the afterglow, Poincare sur- 
faces of section indicate that the instability wave spectrum 
does not satisfy the conditions for global chaos and no en- 
hanced transport is observed experimentally. 

The Poincare surfaces of section which model particle 
motion during the instability bursts show that phase space is 
strongly chaotic and suggest that quasilinear theory should 
be applicable. However, in order to model the spatial and 
temporal evolution of particle fluxes observed in the experi- 
ment, simulations using the guiding center drift Hamiltonian 
are necessary. One such simulation involves computing the 
flux of equatorial particle trajectories to a small region of 
phase space which represents the particle detector. This 
simulation reproduces the modulation depth and frequency 
of the experimentally observed electron flux. When the re- 
sults of the Hamiltonian transport simulation are compared 
with a simple quasilinear transport model we find that the 
predictions of the quasilinear model do not reproduce the 
experimentally observed modulations and underestimate the 
maximum particle fluxes measured in the experiment. 

II. THE COLLISIONLESS TERRELLA EXPERIMENT 

The CTX experimental device consists of a dipole elec- 
tromagnet suspended mechanically in an axisymmetric alu- 
minum vacuum vessel 1.4 m in diameter. The magnet is sup- 
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FIG. 1. The magnetic field geometry of CTX. The solid lines represent 
magnetic field lines and the dotted lines represent surfaces of constant mag- 
netic field. The location of several plasma diagnostics and the approximate 
location of the hot electron ring are also shown. 

ported by a stainless steel casing which houses the electrical 
and cooling leads. The strength of the dipole magnetic field 
is approximately 15 kG at the face of the magnet and falls off 
to less than 50 G at the wall. The magnetic field lines and 
mod-Z? surfaces of the dipole magnet used in CTX and are 
shown in Fig. 1. 

A pulse of microwaves lasting approximately 0.5 s is 
used to break down and heat hydrogen gas which is puffed 
into the vacuum chamber both at the beginning and during a 
discharge. The microwave source is a continuous wave mag- 
netron which has a peak output of 1.5 kW at a frequency of 
2.45 GHz. The electron gyrofrequency equals the frequency 
of the applied microwaves along the surface defined by 
ß0 — B — 875 G. The equatorial field strength of the dipole 
magnet has this value at a radial distance of R0 = R —27 cm 
and this defines the center of the hot electron ring or artificial 
radiation belt. 

Plasma diagnostics include a series of Langmuir and 
high impedance floating potential probes situated at five lo- 
cations throughout the vacuum vessel. The probes can be 
repositioned radially to examine the density and potential 
fluctuations at different flux surfaces. Multiple probe mea- 
surements allow the direction of propagation, the azimuthal 
mode number and radial mode structure of the observed fluc- 
tuations to be determined. 

A krypton proportional counter is positioned at the mid- 
plane of the magnetic field and is used to measure hard x-ray 
emission at energies between 1-60 keV. The counter is col- 
limated to view the equatorial region of the dipole magnetic 
field. X-ray spectra are collected and stored at 50 ms inter- 
vals during the plasma discharge. 

Gridded particle detectors are located inside the vacuum 

chamber both near the equatorial midplane and in the polar 
region. The equatorial particle detector is supported by a 
metal rod which extends from the vacuum chamber wall and 
can be repositioned to measure particle flux at different ra- 
dial positions. There are five polar particle detectors which 
are situated so that the magnetic field at each detector is the 
same. The gridded particle detectors are biased to repel ions 
and electrons with energies less than 100 eV. 

Five Faraday cups are also located in the polar region of 
the dipole magnetic field. The Faraday cups are situated to 
view the same field lines as the polar gridded particle detec- 
tors but rotated 90° in azimuthal angle. The Faraday cups are 
biased to repel ions. 

Three photodiodes are positioned to measure radiation 
emitted from the plasma at wavelengths from 400-1100 nm. 
The photodiodes can be collimated to look at the inside of 
the hot electron ring {R<21 cm), the center of plasma 
(27 cm</?<54 cm), and the outside of the plasma 
(Ä>54 cm). 

III. EXPERIMENTAL OBSERVATIONS 

The intensity of the hot electron population is character- 
ized by the hard x-ray emission produced by electron-ion and 
electron-neutral bremsstrahlung. A fraction of these x-rays 
are detected with the krypton proportional counter. The ob- 
served distributions are non-Maxwellian, characteristic of 
microwave-heated electrons.7 The electrons with energies 
between l-10keV are referred to as the "warm" popula- 
tion, and electrons with energies above 10 keV are referred 
to as the "hot" population. When the microwave power is 
switched off, the "hot" population persists for 5-20 ms, de- 
fining the discharge "afterglow." 

When an intense hot electron population is produced, 
drift-resonant fluctuations (w~ o)dh) are observed both while 
the ECR heating is on and in the afterglow. During the heat- 
ing, the fluctuations occur in quasiperiodic bursts lasting ap- 
proximately 300-500 /xs. During the afterglow, the drift- 
resonant oscillations persist for as long as several 
milliseconds. At both times, the observed instabilities propa- 
gate azimuthally in the direction of the electron VB drift, are 
flute-like with a constant phase along a field-line, and have a 
broad radial structure extending throughout the plasma. The 
saturated amplitudes of the floating potential oscillations 
present at both times are similar, typically 100-200 V. 

Fourier analysis indicates that the quasiperiodic bursts 
consist of incoherent, broad-band fluctuations with frequen- 
cies typically below 2 MHz, although some particularly in- 
tense bursts have frequencies as high as 5 MHz. The insta- 
bilities observed during the afterglow are more coherent than 
those observed during the ECRH and have a higher range of 
frequencies, /~ 1-12 MHz. 

The fluctuations observed during the ECRH also differ 
from those observed in the afterglow in terms of their azi- 
muthal mode number. During the quasiperiodic instability 
bursts, the azimuthal mode number is usually limited to 
m=\, except in the most intense bursts when some high- 
frequency, m = 2  modes are observed. In the afterglow, 
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FIG. 2. Simultaneous measurements of drift-resonant fluctuations and ener- 
getic electron transport during the microwave heating, (a) Floating potential 
oscillations illustrate intense, quasiperiodic bursts correlated with (b) rapid 
increase of electron flux to the Faraday cup and (c) visible photon emission 
from the plasma measured by the center photodiode. 

m=£6, and there are often multiple waves with the same azi- 
muthal mode number present simultaneously. 

The drift-resonant fluctuations observed in the experi- 
ment are related to the hot electron interchange instability 
that has been observed in other ECR heated magnetic mirror 
experiments.8'9 The linear theory of the hot electron inter- 
change, assuming slab geometry and a monoenergetic distri- 
bution of electrons, was developed by Krall10 for w< coci and 
by Berk11 for u>~ <aci and the characteristics of the observed 
fluctuations are generally similar to those predicted by these 
simple theories. 

Coincident with the bursts of wave activity observed 
during the ECRH are increases in the flux of energetic elec- 
trons to the equatorial gridded particle detector and the polar 
gridded particle detectors. As shown in Fig. 2, the radiation 
detected by the center photodiode also rises significantly dur- 
ing the instability bursts and is diminished between them. 
This last fact is particularly interesting. Recall that the use of 
microwave heating leads to a highly localized plasma. Be- 
yond the hot electron ring the density of neutral hydrogen 
should increase rapidly. As the drift-resonant fluctuations 
drive energetic electrons out radially, they can ionize the sur- 
rounding neutral gas. Also recall that p. and J conserving 
radial transport leads to an adiabatic decompression with par- 
ticle energy decreasing as ~VR3. This increases the Cou- 
lomb cross section and makes both electron-neutral and 
electron-ion collisions more frequent. 

The characteristics of the transport measurements sug- 
gest a definite relationship between the spectral content of 
the waves and the observed energetic particle flux. The level 
of the electron flux is not simply related to the amplitude of 
the fluctuations but depends on the spectral content of the 
wave. Also note that the energetic electron flux observed 
both with the equatorial gridded particle detector and the 

Faraday cups is strongly modulated at frequencies related to 
the precessional drift-frequency electrons. The connection 
between the spectral content of the fluctuations and the elec- 
tron flux will be examined in detail in the next section. 

IV. WAVE-INDUCED PARTICLE TRANSPORT 

The interaction of energetic electrons with the drift- 
resonant electrostatic waves observed in the experiment can 
be described by the guiding center drift Hamiltonian12: 

cB 

2e 
p(\B2 + (i — -c*. (1) 

where me and e are the electron mass and charge, c is the 
speed of light, B is the magnitude of the dipole magnetic 
field, fx=mv]_l2B is the magnetic moment, p\\=v\\IB, and 
<& is the electrostatic potential. For a curl-free magnetic field, 
the canonical coordinates of the guiding center drift Hamil- 
tonian, (p\\,x), and (tff,(p), are essentially the magnetic co- 
ordinates defined by: B=V^xV<p = V^. The function 
if/=M sin2 61R is proportional to the magnetic flux bounded 
by a field line and the function *=M cos 9/R2 is related to 
the distance along a field line. Note that M = B0R3

0 is the 
moment of the dipole magnet and (R,ip,8) are spherical co- 
ordinates. Also note that the guiding center drift Hamiltonian 
is appropriate since energetic electrons produced in the ex- 
periment are non-relativistic. 

When the particle motion is confined to the equatorial 
midplane of the magnetic field, p\\ = x~0, B = B( tfi), and the 
equations of motion are reduced to a particularly simple 
form. In general, particles will have a finite parallel velocity 
and will not be confined to the equatorial midplane. How- 
ever, the precessional drift-frequency is only weakly depen- 
dent on pitch angle1 and the results presented here would not 
be significantly altered by including parallel velocity. 

The experimental observations described in the previous 
section indicate that the observed fluctuations can be mod- 
eled as a sum of traveling waves of the form: 

* 
$(<p,f)=-p= 2 amlcos(m(p-wit+<pi), 

45* m,l 
(2) 

where y=1ml\aml\
2. The relative amplitudes, azimuthal 

mode numbers, frequencies, and phases are determined from 
the Fourier analysis of experimentally measured Langmuir 
probe signals. The waves observed in the experiment have a 
time-dependent frequency content, however, typically 
tdhd \og{ami)ldt< 1 and here we consider transport processes 
which occur on the time scale of several drift-periods. 

For a single electrostatic wave the island half-width, 
Ai/f, at the resonant surface defined by cot 

- möÄ(/ii[m) = 0, is given by: Ai//=-(2c<S>0i//rlm/udh)m. 
When multiple drift-resonant waves with sufficiently large 
amplitude are present, islands will overlap and lead to cha- 
otic transport. The topological properties of particle trajecto- 
ries can be determined by constructing the Poincare surface 
of section which is formed by plotting (ifr,<p) at multiples of 
the mapping time. For a spectrum of waves, the mapping 
time is the least common multiple of the periods of the wave 
motion: TM=LCM(r/=2Tr/w/).

13 In practice, the frequen- 
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FIG. 3. A spectrum of waves taken from experimental measurements of 
fluctuations observed during the afterglow and a corresponding Poincare 
surface of section. The chaos is localized to a thin, radially localized band 
near the hot electron ring and consistent with the absence of electron flux to 
the particle detector. The magnetic moment, ß, is chosen so that 
fiB0= 10 keV; other parameters are <t>0= 150 V, N= 10, and TM= 100 /is. 
Note that the surface of section is plotted in (R,ip) coordinates. 

FIG. 4. A spectrum of waves taken from experimental measurements of 
fluctuations observed during the ECRH and a corresponding Poincare sur- 
face of section. The fluctuations spectrum leads to chaos in if/ over the radial 
extent of the plasma. The magnetic moment, /u., is chosen so that 
,uB0 = 4keV; other parameters are <t>0=150V, N= 10, and TM= 100 fxs.. 
Note that the surface of section is plotted in (Ä,<p) coordinates. 

cies are rounded off to keep TM from becoming too large. 
The equations of motion are integrated using the Gragg- 
Burlish-Stoer implementation of Richardson extrapolation.14 

An example of a fluctuation spectrum used to model the 
electrostatic potential observed during the afterglow is 
shown in Fig. 3a. For electrons with energies above 
/LABO«* 10 keV this spectrum leads to resonant wave-particle 
interactions. However, as the Poincare surface of section 
shown in Fig. 3b illustrates, the thin bands of chaos in tj/ are 
limited to the proximity of the hot electron ring and do not 
extend out to the radial location of the gridded particle de- 
tector unless the amplitude of the potential fluctuations is 
very large. 

A number of model fluctuation spectra have been con- 
structed to model the potential fluctuations observed during 
the ECRH. For the wave spectrum shown in Fig. 4a, which is 
taken from the initial part of an instability burst, drift- 
resonances exist for electrons with energies between 1-10 
keV (i.e., the "warm" electrons) from the center of the hot 
electron ring to the wall of the vacuum chamber. As shown 
in Fig. 4b, this spectrum of waves leads to chaos in ip over 
the radial extent of the plasma. Examination of the phase 
space portraits indicates that when the wave amplitude is 
above $0^75 V, there are no encircling Kolmogorov- 
ArnoFd-Moser (KAM) surfaces15 preventing global trans- 
port. 

In order to demonstrate the relationship between the 

modulation of the current and the spectral content of the 
observed fluctuations, we have simulated the time-evolution 
of the flux of electrons to a small region of phase space 
which represents the particle detector. In the simulation, we 
randomly selected an ensemble of 5000 particle trajectories 
that are at the "gridded particle detector" at time t=T. Us- 
ing spectral information from the experiment to construct the 
electrostatic potential in the form of Eq. (2), the equations of 
motion are integrated backwards in time from t=T to f = 0 
and the probability that the trajectory came from an assumed 
hot electron distribution, Fh{/j,,t//), is computed. This pro- 
cess is repeated in order to compute the current as a function 
of time. 

The result of one such simulation is presented in Fig. 5 
where it is compared with the corresponding energetic elec- 
tron flux measurement from the experiment. Also shown in 
Fig. 5 is the Fourier transform of the simulated and measured 
electrostatic fluctuations as well as the Fourier transform of 
the simulated and measured energetic electron flux. The 
simulation successfully reproduces the frequency of the ob- 
served modulations as well as the relative amplitude. Since 
the phases of the measured waves and other profile param- 
eters are unknown, the simulation cannot be expected to re- 
produce the temporal evolution of the particle flux exactly. 

We have written a simple numerical simulation in order 
to compare the predictions of Hamiltonian and quasilinear 
descriptions of particle transport. In the code the simulated 
electron current is approximated by: 
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FIG. 5. A comparison of experiment and a simulation which reproduces the 
gross frequency and depth of the modulation, (a) Detected energetic electron 
flux, and (b) Fourier transform of the detected flux. 

I(t)~eA j d*vvFh((i,tf,d,t)~eAn0a(</,d,t)(u),      (3) 

where (v) is the average velocity of particles reaching the 
detector. The function a(if/,t) evolves according to a 
diffusion-like equation: 

da      d   _ 

dt ~~ dip 

da a 
(4) 

where D^ is the diffusion coefficient averaged over reso- 
nant velocities. The second term in Eq. (4) models particle 
losses due to the probe and $( if/— if/d) is the unit step func- 
tion. The boundary conditions are set so that the solution 
goes to zero at the wall and the magnet casing. 

The diffusion coefficient can be determined from inte- 
grating the equations of motion. In this case the diffusion 
coefficient is computed using the formula: 

.     <M0-^Q))2) 
it (5) o ,i,,i,—- 

and the numerically determined value is used in the quasilin- 
ear simulation. 

The result of a single run representative of the quasilin- 
ear simulation is shown in Fig. 6 where it is compared with 
the result from the corresponding Hamiltonian simulation. 
Significantly, the predictions of the quasilinear model do not 
reproduce the experimentally observed modulations and un- 
derestimate the maximum particle fluxes measured in the 
experiment. 

V. SUMMARY AND DISCUSSION 

This paper describes the experimental observation of 
wave-induced chaotic radial transport of energetic electrons 
in a laboratory terrella. In the experiment ECRH is used to 

I    -0.8 

■ Quasiiinear Simulation 
- Experimental Measurement 

20 30 
Time (u.sec) 

FIG. 6. A comparison of the experimental observation with the predictions 
of a quasilinear transport simulation. The predictions of the quasiiinear 
model lack the large-scale modulations seen in the experimental data and 
underestimate that maximum observed particle fluxes. 

create a localized population of energetic, magnetically 
trapped electrons. The trapped electrons excite quasiperiodic, 
drift-resonant fluctuations which are identified as the hot 
electron interchange instability. Increases in the flux of ener- 
getic particles to both the gridded particle detector situated 
near the equatorial midplane and the array of particle detec- 
tors located in the polar region are well correlated with the 
presence of the fluctuations. The radiation detected by the 
center photodiode also rises significantly during the instabil- 
ity bursts and is diminished between them. The measured 
particle fluxes are modulated at frequencies related to the 
precessional drift motion of the energetic electrons. 

This paper has also presented the detailed results of nu- 
merical simulations based on the guiding center drift equa- 
tions which model transport processes observed in the ex- 
periment. Most significantly, the simulations confirm that the 
observed transport is the result of non-linear wave-particle 
interactions: transport is only observed when the wave- 
spectrum meets the conditions for global chaos; no transport 
is observed when the fluctuations lead to thin, radially local- 
ized bands of stochasticity. 

The results of Hamiltonian simulations which explore 
the temporal details of the observed particle transport have 
also been presented. The relationship between chaotic mix- 
ing and the experimental measurements has been demon- 
strated by a simulation which models the flux of energetic 
particles to a small region of phase space. The simulation 
reproduces the frequency and depth of the observed modula- 
tion. In contrast, quasilinear models of transport do not re- 
produce the modulation of the particle flux and underesti- 
mate the maximum particle fluxes observed in the 
experiment. 

The simulations described here model transport pro- 
cesses which occur on the time scale of several drift-periods. 
This time scale is short when compared with the evolution of 
an entire instability burst. Future research will focus on cou- 
pling transport simulations to a dispersion relation for the 
instability in order to investigate the self-consistent, non- 
linear evolution of the plasma. This will allow us to address 
some of the unresolved questions related to the saturation of 
the instability and the chirping of the wave frequencies. 
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In our original proposal, we had proposed an extensive theoretical research 
program on substorms in the Earth's magnetosphere. As discussed below in our synopsis, 
and elaborated in the attached publications, we have made significant progress in 
developing a predictive dynamical theory of substorms. This theory has been obtained by a 
combination of analytical techniques and high-resolution computer simulation. Apart from 
the work on magnetospheric substorms, we have also carried out, supported by this grant 
(as well as the National Science Foundation), some interesting applications of our basic 
forced reconnection theory to laboratory plasmas. We have also completed a substantial 
body of work on current sheets and MHD turbulence in the solar corona. We were led into 
this research on the solar corona by the realization that there is much in common between 
thin current sheets in the magnetosphere and the solar corona, although the plasma 
parameters are quite different. Since current sheets mediate the transition to turbulence, it 
was natural then to investigate the spectral characteristics of the turbulence. In turn, these 
investigations led us to the investigation of vortex singularities and spectra in 
hydrodynamic turbulence. Although such diverse lines of investigation were neither 
envisioned nor proposed in our original proposal, they were an interesting and natural 
outgrowth of our effort on magnetospheric physics. 

In what follows, we give a synopsis of our principal findings in magnetospheric 
(Section I) and solar physics (Section II). Details are described in the attached 
publications. This research supported by the AFOSR has led to 17 archival publications 
and 12 invited/selected talks in national/international conferences/workshops. 

I. GEOMETRY AND DYNAMICS OF MAGNETIC RECONNECTION: SUBSTORMS 
IN THE MAGNETOSPHERE AND SOME LABORATORY APPLICATIONS 

Magnetic reconnection can be free or forced. Free reconnection is caused by a 
spontaneous instability, whereas forced reconnection can occur in a stable plasma due to 
perturbations imposed on the boundary. We have investigated the relevance of both types 
of reconnection to the Earth's magnetotail. 

Reconnection, if it is to be distinguished from diffusion, occurs in the vicinity of 
Separatrices (such as neutral lines or X-points). Whereas separatrices are determined by the 
geometry of the magnetic field, the dynamics of reconnection is controlled by non-ideal 
mechanisms in a generalized Ohm's law such as resistivity, finite particle inertia or electron 
pressure tensor. If the geometry is unfavorable to topological change, it is not possible to 
trigger tearing instabilities by mere inclusion of non-ideal mechanisms in Ohm's law. This 
simple point is often misunderstood and has been a source of considerable controversy in 
the literature. The importance of geometry is illustrated by demonstrating the linear stability 
of the magnetotail in the presence of a significant Bz-field to all forms of tearing, 
independent of the mechanism that breaks field-lines/1,2/. 

In the absence of free reconnection in the ambient magnetotail, attention is then 





focused on the role of forced reconnection, driven by the solar wind. Multi-satellite 
observations indicate the development of thin current and a rapid intensification of the 
cross-tail current density at near-Earth distances during a short interval (<1 min) just before 
onset, after a period of sluggish growth (-0.5-1.5 hr). These observational features have 
been reproduced recently by analysis and MHD simulation, especially in the high- 
Lundquist-number regime/3,4,5/. In the slow growth and impulsive pre-onset phase, a 
thin current sheet develops spanning Y-points that stretch from the mid-tail region (-30 RE) 
to the near-Earth region (-10 RE> It is shown that a thin current sheet geometry involving 
Y-points and the associated convection pattern allows a natural resolution of some ongoing 
controversies in substorm research. When the current sheet becomes sufficiently thin, it is 
no longer justifiable to rely entirely on resistive MHD, and finite ion-Larmor-radius terms 
such as electron pressure gradients and Hall currents must be included in the theory. These 
collisionless effects (incorporated via the generalized Ohm's law) are shown to have a 
striking effect on thin current sheet and reconnection dynamics in the impulsive pre-onset 
phase/5/. 

One of the important ground-based observational features of substorm dynamics is 
the evolution of the ionospheric potential in the auroral oval. We have proposed a 
kinematic, 3D reconnection model that integrates the geometry of the dayside and the 
nightside magnetosphere, and compares well observed ionospheric potential patterns/6/. 

The basic principles of our work on nonlinear reconnection and the persistence of 
current sheets are also applicable to the important problems of sawtooth oscillations and 
mode-locking in laboratory fusion plasmas. These theoretical models are developed in 
refs. 7, 8 and 9. The boundary conditions and plasma regimes for laboratory applications 
are quite different than they are in the magnetosphere, and yet it is interesting to see that the 
same basic principles of free and forced reconnection are applicable to both types of 
plasmas. 

II. SOLAR CORONAL DYNAMICS 

One of the primary objectives of this research is the investigation of the effect of a 
small but finite resistivity on the dynamics of current sheet formation in the solar corona. It 
is demonstrated that helicity-conserving (free as well as forced) reconnection processes lead 
to the formation of current sheets near Separatrices of the magnetic field. The rate of 
growth of the current sheet amplitude in the linear as well as the nonlinear regime of free 
and forced reconnection processes is calculated explicitly for some analytically tractable and 
realistic physical models/10,11/. These analytical results are compared with numerical 
simulations as well as observations. It is found that the heating produced by these current 
sheets is enough to account for the power balance in all quiet and some (but not all) active 
coronal loops. 

We have continued the investigation of the time-history of current sheet formation 
and turbulence in 2D coronal equilibria. In the process, we have found some new and 
interesting results along some unexpected avenues of research. These include (i) the subtle 
role of the spatial extent of photospheric footpoint shear in controlling the impulsive growth 
of current sheets and reconnection /12/ (ii) the role of nonlinear shear-Alfven dynamics in 
determining the spectral character and anisotropy of MHD turbulence in the solar wind and 
the interstellar medium /13,14/ as well as the dynamo effect/15/, and (iii) new and rigorous 
results on the formation of finite-time vortex singularities in hydrodynamic flows (which 
are analogous to current singularities in MHD)/16,17/. 
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Asymptotic tau equilibria which are slowly varying in the Earth-Sun direction are constructed, including 
., .v.        iZ™^K of the rnaenetic field.  These equilibria allow for spatial dependencies in Bn and fly . 
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simulations and observations are discussed. 

1.   INTRODUCTION 

Ever since Ness [1965] reported observational evidence for a 
neutral sheet in the Earth's magnetotail, the collisionless tearing 
instability has claimed much attention as a possible mechanism 
for magnetic reconnection in the tail.    Coppi et al.  [1966] 
considered a simple neutral sheet in which oppositely directed 
magnetic fields Bx=Bx(z) face each other across the z = 0 line 
(in the  x - z   plane) and demonstrated that such a sheet is 
unstable to the collisionless tearing instability [Furth, 1962; 
Laval  et  al.,   1966].     (We  use  here  the  standard  solar 
magnetospheric  coordinates  (x.y.z). with the x   axis   in the 
Earth-Sun direction, the z axis in the south-north direction, and 
the y   axis , which defines an ignorable direction, is chosen to 
make the coordinate system right-handed.) In the simple magnetic 
geometry considered by Coppi et al., the neutral line z = 0 is the 
source of the separatrix.   Far away from the separatrix, the 
plasma obeys the ideal magnetohydrodynamic (MHD) equations. 
The departure from ideal MHD behavior occurs in a narrow 
region near the separatrix. By considering the energetics of the 
instability,  Coppi et  al.  demonstrated  that the  dominant 
contribution to the inverse Landau damping effect comes from 
electrons, not ions.   Thus this mode came to be known as the 
"electron tearing" instability. 

We consider now the effect of a large, constant  By 
field 

superimposed on the model of Coppi et al. The presence of By 

introduces magnetic shear in the model. The separatrix in the x - 
z plane grows out of the z = 0 line. Drake and Lee [1977] 
showed that collisionless tearing modes are unstable in this 
geometry. (Strictly speaking, the results of Drake and Lee [1977] 
hold for a low-beta plasma without temperature gradients, as 
shown by Cowley et al. [1986]). Since the electrons carry the 
perturbed parallel current near the separatrix and provide the 
mechanism for reconnection through their small but finite inertia, 
this instability too can be classified as electron tearing. 

Neither of the two cases discussed above are representative of 
the Earth's magnetotail. Much emphasis has been placed in the 
literature on the two-dimensional model 

B = fi„tanh-x + B 
u K '■ 

(1) 
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with constant   B0, X,   and Bn [Schindler, 1974; Galeev and 
Zelenyi, 1976; Lembege andPellat, 1982; Büchner and Zelenyi, 
1987; Büchner et al, 1991; Pellat et al, 1991; Kuznetsova and 
Zelenyi, 1991].  For nonzero values of B„ , this configuration 
has no magnetic separatrix. (For useful discussions of the role of 
Separatrices in magnetic reconnection, we refer the reader to 
Greene [1988] and Lau and Finn [1990].)   The absence of a 
separatrix implies that reconnection or tearing (in the sense of 
affecting  a topological change) cannot really happen for 
significant values of   Bn.   It is widely believed that the "ion 
tearing" instability can occur in these circumstances, but the 
subject remains a matter of lively debate [Schindler, 1974; Galeev 
and Zelenyi, 1976; Coroniti, 1980; Lembege andPellat, 1982; 
Büchner and Zelenyi, 1987; Pellat et al, 1991; Kuznetsova and 
Zelenyi, 1991].   The analysis given in this paper turns out to 
support'the point of view recently expressed by Pellat et al. 
[1991], who have questioned the existence of the ion tearing 
mode.'    This point of view has significant implications for 
electromagnetic particle simulations of collisionless tearing 
[Terasawa, 1981; Hamilton and Eastwood, 1982; Swift, 1983; 
Ambrosiano et al, 1986; Swift and Allen, 1987; Pritchett et al, 
1989; Zwingmann et al, 1990; Pritchett et al, 1991] which can 
shed valuable light on this controversial issue. 

Recently, we showed that the inclusion of a constant By field 
in the model (1) can qualitatively change its stability properties 
[Wang et al, 1990; hereafter WBL]. Our model, referred to here 
as the three-component model, breaks with the tradition of using 
two-component models in theoretical analyses of collisionless 
instabilities in the magnetotail. However, just as in the two- 
component model, the formation of a magnetic separatrix is 
inhibited by the presence of a significant B n field. It is 
therefore not surprising that we found that the electron tearing 
instability has a stabler parameter space and is much harder to 
excite in the three-component magnetotail than in a configuration 
with Bn= 0 . Furthermore, the growth rate of the mode is slow, 
consistent with the growth phase, but not the expansion phase of 

a substorm. . 
We now develop an equilibrium model which is more realistic 

than considered heretofore in analytical studies of collisionless 
tearing. As in WBL, we include the By field. Fairfield and 
others have noted that the By field is a persistent feature of the 
magnetotail [Fairfield, 1979; Cattell and Mozer, 1982; Liu. 
1983; McComas et al, 1986; Tsurutani et al, 1984; Sibeck et al, 
1985]. Voigt and coworkers [Voigt and Hilmer, 1987; Hau and 
Voigt, 1992] have shown, based on some analytical and 
numerical examples, that the requirements of global magnetostatic 
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equilibrium of the magnetotail should include By. The possible 
role of the By field   in observations of substorm dynamics was 
pointed out as early as  1978  by Akasofu and coworkers 
[Akasofu et al., 1978]. From a detailed examination of IMP data 
Akasofu et al. stressed the need for a three-component analysis of 
magnetic fields in the magnetotail during substorms.   Though 
there are a number of other events reported in the literature in 
which an enhancement in By and a reduction in Bn is observed 
prior to the onset of a substorm [Nishida et al., 1983- Bieter et 
al., 1984; Lepping, 1987;  Takahashi et al., 1987- Lui et al 
1988; Lopez et al., 1989], no systematic studies Of substorm' 
events with correlated variations in   By and Bn are available 

One of the main improvements of the present paper over WBL 
is the development of asymptotic equilibria with spatial 
dependencies in Bn and By, that is, Bn = Bn(x,z) and« = 
Vy(x,z) . These equilibria, and the single-particle motions in 
them, are described in section 2. We show that these equilibria 
change qualitatively our current understanding of collisionless 
instabilities in the magnetotail by introducing new global 
features not captured adequately by the model, 

B = 50 tanh^ £ + B y + B (2) 

with By and Bn constant.  In this geometry, the global bounce 
penod xbe for electrons is much shorter than the growth time of 
the instability when By~Bz.   WBL has been criticized for 
neglecting the stabilizing effect of this bounce   [Büchner et al 
1991; Pritchett et al, 1991].   This criticism would be justified 
except for the fact that the model (2) is itself globally rather crude 
and underestimates severely the bounce period in a stretched 
magnetotail. If we must include the effect of electron bounce then 
it is preferable to do so in an equilibrium model which captures 
the global features of the magnetotail with greater realism than 
equation (2). And that is precisely what we achieve by allowing 
for spatially varying Bn in the new equilibrium model   We then 
show that there are regions where  yxbe * 1 , and the electron 
tearing mode grows, with a growth rate y, as predicted by WBL 
Furthermore, when we consider the special case   ß„= const in 
which    yrbe « 1 , we find no ion tearing, contrary to the 
findings of Büchner et al. [1991].   The persistence of slow 
electron tearing, and the absence of ion tearing, are recurrent 
themes that are explored in detail for both two-component (B = 
0) and three-component (By * 0) equilibria in sections 4 and 5 * 

Though the electron tearing instability can account for the 
growth phase of a substorm, it is not sufficiently rapid to 
account for the current disruption and diversion that occurs at the 
onset of the expansion phase [Takahashi et al., 1987- Lui et al 
1988].   Elsewhere [Wang et al, 1991], we have discussed tha[ 
nonlinear mode-coupling effects may lead to a significant 
enhancement of the linear growth rate. It was implicitly assumed 
m that discussion that a linearly unstable mode will grow to 
sufficiently large amplitude that it can couple to other unstable 
modes.  However, that possibility was explored in the context of 
the equilibrium represented by (2) which, as discussed here has 
certain  limitations.   We suggest here that the circumstances in 
which collisionless tearing can grow as a robust instability not 
only in the linear regime but also in the nonlinear regime must 
involve reduction of Bn to extremely small values. We therefore 
point to  the possibilities  inherent in  the three-component 
asymptotic equilibria calculated in this paper.   An interesting 
property of these equilibria is that Bn may be reduced to zero at 
near-Earth distances when    By   is space-dependent     This 

possibility was first noted by Hau and Voiot riocm     u 
Profiles for By were different from ourtiidX T^Z 
for their class of profiles, the By value required to reduce B   to 
zero is much larger than the average value of B   frZ 1" 
sheet. For our class of profiles, „'find that L rÄST 

air °wZf°B VvU6S I' B> m°re " aCC°rd Wi* °^-d  , values.   When  Bn vanishes, a separatrix can be formed   ™A 

earing instabilities can grow. Whether the nonlmeSTv0tt"n 
of these instabilities can actually account for the rapid c™ 
disruption and diversion observed in near-Earth regionL™ 
an open question. remains 

The layout of this paper is as follows. In section 2 we obtain 
some asymptotic tail equilibria, both with and withom 5 t 
section 3 we develop a fluid model, including a generalized 
Ohm s law which allows the treatment of collLnlC etw 
modes, and benchmark the predictions of this model with ZZ 
results from kinetic theory. In section 4 we use the eneZ 

;efal f1Ved from °" fl-d model to analyze the SS 

We Z ZT"* magnet0taiI With0Ut  B> ^constant 5„ We fbd that the ion tearing mode does not occur, and the onlv 
possible instability, under certain conditions, i   an electro 
tearing mode. In section 5 it is shown that the incluln of 5 
and a spatiaUy varying  Bn can further destabilize the electrfn 
easing instability. We conclude ^ section ß sum~

n 

our results and their implications for observations. 

2.  SOME ASYMPTOTIC EQUILIBRIA 

2.1. Two-Component Equilibria 

We begin by considering some asymptotic two-component 
equilibria, ,e equilibria for which 3y = 0 . Assuming tha'*" 
coordinate is ignorable, the magnetic field B may be written as 

B = Vyxy (3) 
where V is a flux function. In equilibrium, for a charged particle 
of type a , Je energy Ha and the momentum Pay JJ^Z 

c0rZ
8artat 1S n° eqUÜibriUm 6leCtr0s4c field' *««< 

H 1 2 
2Wav« 

P
ay = m

a
v

ay+<faW/o 

(4) 

(5) 

where m   is the mass of the charge particle of type a , an   its 

Son       I »^-P^ of light  An equilibrium distribution 
function can be written as 

fa = fa (Ha-P^ 

= n. 
2nT 

3/2 
exp 

CP„ V    -H \ ay   av       n 
T a J 

(6) 

where Va is the drift velocity, Ta is the temperature (in energy 
umts) for parses of type a ( = e, i for a hydrogen plasma), Z 
n0 is the average number density of electrons and protons The 
temperature Ta is taken to be a constant. From the relation' 

n    = \dv f , 
(7) 

ctditr TT- ° vqureTrlity- n°=ni -we °btain *« 
law gives ~ y   " y   ComP°nent °f Ampere's 
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vV = 
Ait 

' c 

where 

X = 
2c(T.+ T) 

eBn (V. -V   ) 

(8) 

(9) 

defines a characteristic equilibrium length scale, and the constant 
ß0 is determined by the relation 

B2
0l%% = n0 (Tt + Tj) . (10) 

BQ is a measure of the lobe magnetic field. We scale the variables 
x/X -> x, y/ß0 A- -» V . p/(B0

2/4n) -> p , B/ß„ -* B , and 
introduce a small, positive parameter E ~ 3/dx « d/dz - 1 . In 
this approximation, a large class of equilibrium solutions of (8) 
is given by [Birn et al., 1975; Birn, 1979; Zwingmann and 
Schindler, 1980; Lembege and Pellat, 1982; Zwingmann, 1983] 

V = - log {cosh [Z/(EX)] //(EX) (11) 

where /(Ex) is a slowly varying function of x . It follows that 

B   = 

z n      dX 

-|j=/(Ex)tanh[z/(Ex)] (12) 

= E 
'(EX) 

/(«)  ' 
z/'(£x)tanh[z/(£x)]f,    (13) 

where prime denotes differentiation with respect to the argument. 
Following Lembege and Pellat [1982], we take /(EX) = exp (ex) 
(x < 0) . As a first approximation, almost all analytical studies 
replace (12) and (13) with 

B   = tanhz, 

B   = £. 

(14) 

(15) 

However, this is valid only in the region Ixlg 1 , Izl—» 0 . It 
cannot be assumed that this approximation holds for large x 
close to the z = 0 line, for the equilibrium pressure balance 
condition implies that dp/dx = - £ which, in turn, gives p=p0- 
Ex , with po constant. This means that the pressure increases 
with x , which is unrealistic for the distant tail. A better 
approximation for Bn   than (15) is 

B   = E (1 - z tanh z). (16) 

B   ~ E (1 - z tanh z). 

2. Middle region, Ixl-LQ 

In this region, since EX ~ 1, we get 

1/2      ,    .   1/2   , 
B   ~ e     tanh (e      z) 

However, (16) does not represent realistically the x dependence 
of Bn (x,z) which should tend to zero as Ixl -> <*> . It is possible 
to improve on (16) by taking 

/(Ex) = exp [EX/(1 - EX)]   (x < 0) . (17) 

We recall that the distance x is measured in units of X ~ 1 RE. 
For specificity, we take E = 0.1 , and define L0 = E_1 = 10 . The 
scale LQ (~10RE) enables us to define three separate regions: 
1. Near-Earth region, IXI«LQ 

In this region, using (17) in (12) and (13), we get 

B   -tanhz, (18) 

(19) 

(20) 

B   ~-   [l-e1/2ztanh (e
mz)] . (21) n       4 

If we define B' = e"1/2B , z' = ell2z and E' S e~112 E/4 , then 
(20) and (21) become 

B   ' ~ tanh z', 

B E' (1 - z' tanh z') , 

(22) 

(23) 

which is the same as (18) and (19).  In other words, the middle 
region has the same structure as the near-Earth region, except that 
the magnetic field in it is somewhat weaker and the current sheet 
is somewhat wider. 
3. Distant-tail region, lxl»L0 

In the distant-tail region, taking the limit X/LQ —» - ~ , we get 

B   ~ e    tanh (e    z), 

5-0. 

(24) 

(25) 

Equations (24) and (25) describe essentially the configuration 
first considered by Coppi et dl. [1966], who found electron 
tearing modes to be unstable. We caution that though the 
qualitative features of the magnetic field as described by (24) 
and (25) are reasonable, the far distant-tail region is outside the 
strict domain of validity of the asymptotic solution (13). Here 
we do not pursue this matter further, for the main focus of this 
paper is on the investigation of collisionless tearing modes in the 
near-Earth and middle regions. We also note that the near-Earth 
configuration described above is not totally realistic for Ixl s 
5RE because at these distances, the Earth's dipole field, not 
included in the model, plays a dominant role. Matching to the 
dipole field can be carried out, in principle, but is not germane to 
our considerations here. Figure 1 shows a plot of our asymptotic 
two-dimensional model with the origin set (arbitrarily) at x = - 
5Ä£i z = 0. 

We now discuss some features of the single-particle orbits. 
For a particle of mass ma and charge qa gyrating in magnetic 
field B , the Larmor frequency is (Oca = qaB/mac , and the 
typical Larmor radius is pca = v(a/coca , where v,a = 
(2Ta/ma)1/2 is the thermal velocity. Using typical tail 
parameters (see, for instance, Lui [1987]), we get pci~ (0.5 - 
1)#£, In both regions 1 and 2, pci > 1 , p«« 1 (scaled by X). 
Hence electrons may be treated in the guiding-center 
approximation, but the ions are essentially unmagnetized. 
Because of the z dependence of ß„(x,z) , the field lines are 
more stretched as z increases than in the case of constant Bn 

(see Figure 1.). In the Appendix, we show that this has the 
consequence that the average bounce period of electrons in both 
regions 2 and 3 can be substantially larger than the bounce 
period with constant B„. 

It is interesting to note that the large separation in the 
magnitude of the Larmor frequency a»,.«, and the average bounce 
frequency C0j,e = 27iTj,e

_1 in our asymptotic equilibria (in those 
regions where Bn is weak) diminishes the possibility of low- 
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3 

Fig. 1. Magnetic field lines in the x-z plane for equilibria with Bn = Bn(x,z). The abscissae indicates -x the 
ordinates, z. 

order resonances between the Larmor and bounce frequencies for 
most particles, and the chaos that can result from such resonances 
[Chen and Palmadesso, 1986; Büchner and Zelenyi, 1987]. 
Hence, for equilibria with spatially varying Bn, we will not 
concern ourselves here with intrinsic stochastic diffusion as a 
possible mechanism for the restoration of ion tearing. As to 
whether stochastic diffusion can destabilize the ion tearing if B 
is constant has been the subject of debate recently [Pellat et al., 
1991; Kuznetsova and Zelenyi, 1991] and is an issue we shall 
address in section 4. 

2.2. Three-Component Equilibria 

We now consider equilibria which are symmetric in y but 
with all three components of the magnetic field nonzero. The 
magnetic field B is represented as 

B   =   Byy + V\jr x y . (26) 

The condition of magnetostatic equilibrium gives the Grad- 
Shafranov equation [Voigt andHilmer, 1987; Paranicas and 
Bhattacharjee, 1989; Hau and Voigt, 1992] 

B„ = b, <0-2bly+.... 

when   b0 and b:  are positive constants. If we order b0 ■ 
M ~E,thennear z = 0  (11) can be modified as 

(28) 

V = -log {cosh [zf(Ex)]/f{£x)} b.x' /2, (29) 

vV _d_ 

dy 

B, 
2\ 

J 
0 (27) 

where p = p(y) and ßv = Ä,(V) are two free functions. If we 
set By = 0 and take p = exp (2y) , we recover (8) (in 
dimensionless variables). We note that (8) also holds for B = 
const, in which case a class of asymptotic solutions can be again 
constructed using (11). The Bz and B2 components for this 
class of solutions has already been given in section 2.1. 

We now consider the effect of a nonzero dBy 2/dy on the 
solution (11). Since \)/ is small and negative near z = 0 , we 
make the expansion 

with f(ex)   specified by (17).   This yields   Bn   ~     t +bxx 
which implies that Bn   vanishes on the  z = 0 plane at x ~  - 
bxlz . Hence an X-point appears on the z = 0 line (in the x - z 
plane) at near-Earth distances (5 RE <\x \ <:iO RE). That the 
spatial dependence   of By in a magnetostatic equilibrium can 
lead to the reduction of Bn to zero on the z - 0 plane has been 
recognized by Hau and Voigt [1992].   However, for their class 
of equilibrium profiles, they find that the By required to reduce 
Bn to zero is much larger than the observed average By in the 
plasma sheet.   For our class of pressure and  By profiles, this 
limitation is overcome because the average values of both B 
and By are of the same order. 

The particle orbits and drift motions in the presence of B has 
been considered by WBL and will not be repeated here. Simple 
considerations of particle orbits near z = 0 , where (2) holds, 
shows that the main stabilizing effect of Bn is to remove 
electrons from the z = 0 plane where the separatrix tends to form 
in the absence of Bn. The addition of the By field provides the 
electrons with another guided channel for motion near the z = 0 
plane. Then, as noted by WBL, the growth of the electron 
tearing instability depends on the competing effects of By and 
Bz. As far as the effect of electron bounce is concerned, we show 
in the Appendix that the bounce period in the stretched 
magnetotail increases due to the x dependence of Bn ; hence the 
condition yibe ;> 1 is satisfied in the middle region. This, in 
turn, implies that the stabilizing effect of the electron bounce is 
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weakened, and that the electron tearing mode can grow in the 
linear regime not only for By » Bl but also for By ~ Bz near the 
z = 0 plane. However, we repeat for emphasis that in the latter 
case, the growth rate is small, and the mode is likely to saturate 
nonlinearly at a low amplitude. 

In this section we have made use of dimensionless variables in 
order to keep the notation simple. In the remainder of the paper, 
we shall return to using the primitive physical variables. 

3.   ENERGY INTEGRAL 

In WBL, the stability of the plasma sheet was analyzed by 
asymptotic matching of the normal mode equations in the inner 
region, where finite particle inertia provides the reconnection 
mechanism, with the equations in the outer region, governed by 
ideal MHD. The technical details of such an approach are 
somewhat different from those involved in the Lyapunov 
functional method (developed by Laval et al. [1966]) which relies 
on the existence of an energy integral. We review, at first, the 
stability criteria that follow from the energy integral. From the 
linearized Maxwell's equations, it follows that 

~t da E, x B, 
47t1 ! 

(30) 

where all perturbed quantities are designated by the subscript 1. 
We assume that the boundary conditions on the surface bounding 
the plasma volume ensure that the surface term vanishes. Then, it 
can be shown [Laval et al, 1966] that 

♦w,.7&]- 

3/a     2 

where 

J 1 et Ar 
K „is. 

la -  ■'la ~ 3x(/   Tl V, 

From (30) and (31), it follows that 

a75e = 0- 

(31) 

(32) 

(33) 

where 

5w4^ {B?+E?} 

'far        K 

The energy integral S2£ is a quadratic form. If 52£ is 
positive-definite for all nontrivial permissible perturbations, 
then the system is stable [Kruskal and Oberman, 1958; Laval et 
al., 1966]. In other words, a sufficient condition for stability is 

5 £ > 0 . (35) 

Furthermore, for a Maxwellian distribution, since, dfa / dHa = 
-faßa. . we get 

K 
u a a j a 

Equation (36) implies that for a Maxwellian distribution a 
sufficient condition for stability is 

»v. /*[£{■;+«?} 

rti dv v 
K      2 ] > 0. (37) 

Since collisionless tearing modes have low frequency, the 
electrical energy Ei2/$n is much smaller than the magnetic 
energy BftSn , and can be neglected. The sufficient condition 
(37) can be rewritten as 

2 
5 W: dx    -TX—   dv v K   2 

>0.     (38) 

One of the difficulties presented by the energy integral 82£ is 
that the physical interpretation of some terms is not transparent. 
We take for instance, the last term on the right-hand-side of (34). 
Lembege and Pellat (1982) showed, by using a Schwartz 
inequality, that the term has a lower bound which can be 
attributed to the compressibility of the electron fluid. This 
interpretation has been invoked repeatedly in the literature, but it 
is worth noting that it was meant to hold for the lower bound, and 
not the term itself. In fact, it is clear that there is more to the 
original term than electron compressibility. The function 52£ 
represents the second variation of the total energy £ which is a 
sum of the electromagnetic field energy and the kinetic energy of 
the fluid. Since the perturbed kinetic energy of the fluid is 
always positive definite, it must be associated with a manifestly 
positive definite term in 82e . Thus it would seem that the last 
term in (34) should involve the perturbed kinetic energy of the 
fluid plasma, but this is not obvious. (The physical 
interpretation of the kinetic terms is much more transparent in the 
energy principle of Kruskal and Oberman [1958] for a guiding- 
center plasma, but this is not the model underlying the functional 
(34) which has been derived from the full Vlasov equation.) 

Li view of the interpretational difficulties of a fully kinetic 
treatment, we propose a different approach for the study of 
collisionless tearing modes in the magnetotail. This approach 
uses fluid equations, and the mechanism for reconnection is 
provided by finite particle inertia in the generalized Ohm's law. 
That this is a reasonable model for collisionless tearing modes 
was suggested by Furth [1962, 1964]. The point of view we 
adopt here is that the energetics of collisionless tearing modes is 
describable within a fluid model by using a generalized Ohm's 
law. The wave-particle resonance condition (which is a kinetic 
effect) is included in such a model by simply equating the growth 
rate y to kvu , where k is the wave number and vu the electron 
thermal speed. (For sheared configurations, k is replaced by k n, 
the component of k parallel to the magnetic field.) This ad hoc 
resonance condition misses the detailed structure of the particle 
distribution functions. However, we shall demonstrate that the 
growth rate calculated from the model equations agrees, except 
for an overall multiplicative factor of 7t1/2, with the results of a 
fully kinetic treatment. One of the advantages of the fluid model 
is that the energetics of the instability is much easier to interpret 
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physically. This will enable us to formulate a stability condition 
which is both necessary and sufficient. 

The linearized fluid equations are 

-V/v (39) 

we get 

3 ti J xB, JjXB 
p dt c + 

c 

3pj 

dt 
+ V •(pu) = 0, 

UXB    m 3J 
fc 

i + c ~ne2  3' 

1 3Bi 
Vx El = c   dt  ' 

VxBj = 
4K 

Pi = nl (Te 
+ T?- 

(40) 

(41) 

(42) 

(43) 

(44) 

where pi is the perturbed mass density, u is the perturbed fluid 
velocity, p\ is the perturbed pressure, ri\ is the perturbed 
number density (nj = nel = n(1 by quasi-neutrality), and the 
unsubscripted variables represent equilibrium quantities. We 
note that the generalized Ohm's law (41) has a term proportional 
to the electron mass, but none proportional to the ion mass. This 
can be readily seen by considering the more general form (see, for 
instance, Krall and Trivelpiece [1986]) 

3Ji 2/1      1\    /        ixB\ 
-3— =  ne   I— + —I    \Ei+ /. dt \m     m. J    \   1        c    / 

which reduces in the limit mjmi« 1 to the form (41). Apart 
from terms involving finite particle inertia, the generalized Ohm's 
law contains other terms such as the Hall term, the electron 
pressure gradient term, as well as terms involving the anisotropic 
stress tensor. It can be shown that the first two do not 
qualitatively change our results for the class of equilibria 
considered here. However, anisotropies in the stress tensor, 
which are an additional source of free energy, may alter some of 
our conclusions. We do not consider pressure anisotropies here 
because it is questionable whether an instability that is primarily 
driven by such a source of free energy should be classified as a 
tearing mode. 

We now use (39) - (44) to calculate the different terms in (30) 
(neglecting, of course, the term E\2ßn which is much smaller 
than the term B^lin ). We get 

VEi 

J,xBu r ■, 
dt 

A 
2ne 

2h (45) 
) 

The first term on the right-hand-side of (45) can be calculated 
from the momentum equation (39) which gives 

J, xBu a /1   2\ 
= a7V2p"; 

JxB, 

Writing 

+ V-(pjU) -p.V-u + u-- 

Bi = VVj x y + Byl y , 

(46) 

(47) 

JxB, 
= V- u  

V     c J 

 LV'ii +—U-VJ. 
c c 

Since dy^/dt + u • V\|/ = 0 , and / = /(\|/), we obtain 

u- VJ 
9y 

471    df     \|/'(z,£x) ' 

(48) 

(49) 

where the prime in y'{z,zx) indicates differentiation with 
respect to z . Defining F s \|/'(z,ex) and substituting (46) - 
(49) in (45), we get 

VE, = ! A v 
7; pu2 + 2% -r- +  w. 
2 a

2    8rcF Y1 

+ V- (^uJ-pjV-u, 

7 
where a>p

2 = 4nne lme is the plasma frequency, and 

P\ = Pi-P'(V)Vl = Px-Jyxlc. 

Equation (30) can then be cast in the form, 

^S^ + y^-f^EjXBj+^u]  =0 

(50) 

(51) 

(52) 

where 

52e = 52Wf + sV + 52K + 52ß = ??U + 52AT + 82Q . (53) 

Here 

5V/=^J,x(5f + fvf), (54) 

is the free energy of the magnetic field; 

3?  b\   m  - J * ?! V ■ u . (55) 

can be attributed to plasma compression, and 

52ß  =   px(27t/co2)j2, (56) 

is the "dissipation" due to finite electron inertia. Note that the 
fluid kinetic energy 52AT= \dx (l/2)pu2, and the dissipation 
522 are positive definite quantities. If the boundary in (52) is 
chosen such that the surface term vanishes, then a sufficient 
condition for stability is 

52U = 5V, + 82W   > 0 
/ c (57) 

In order to develop confidence in the fluid model, we now 
benchmark it with standard results from kinetic theory. For 
simplicity, we consider an incompressible fluid for which §2WC 

= 0 . Then, there are three terms in the energy integral (53) among 
which B2K is the kinetic energy and always positive definite. It 
is clear that a tearing instability can occur if and only if there is 
magnetic free energy available, i.e., $,2Wf < 0 , and there exists 
simultaneously, a mechanism for dissipation causing 82<2 
(which is always positive definite). 
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Let us first consider the equilibrium configuration (2) with Bn 

= 0 . For this case the growth rate of the collisionless tearing 
instability is known analytically. The mathematical problem 
divides itself neatly into two regions: the outer region, away 
from z = 0 , where the plasma is in quasistatic equilibrium, and 
the inner region near z = 0 where inertial and dissipative effects 
are important. We rewrite (54) in the form 

8V  = — \dx   [y 2 + k%2+ j v2] ,        (58) 

where y. = ij/(z, t) coskx , F = tanh z/X and prime denotes 
derivative with respect to z . In the outer region, neglecting 
inertia and dissipation, we get 

Y' _ fc2y _ (F"/F) \j/ = 0. (59) 

Furth [1963] observed that if the first term in the integrand of 
(58) is integrated by parts and (59) is used,  b2Wj-  reduces to 

z=0 + 

/ 167t z=0- 

-iS^2(0)' (60) 

where  \dx = a^ \dz , a^ = \dxdy    and the parameter A0' is 
defined by the relation, 

Ao' 
^(0+)_y(0-) 

(61) 

( In obtaining (60) , we have used the boundary conditions 
\j>(_ oo) = \j/(+ oo) = 0 .) For the equilibrium (2) with Bn = 0 , we 
get (see, for instance, WBL) 

2 
A0 =  ^2 <1-*V). 

kX 
(62) 

On the interface between the inner and outer regions, the 
Poynting flux is 

da. •  — E. x B, 
471      l 1 

c 

An 
I        dxdy -        dxdy I   z 

[z=o - 2=0 + J 

E!XB1 

iSi^h^'-h 8\ (63) 

Thus the magnetic free energy in the outer region is spent as 
dissipation and kinetic energy in the inner region. 

To determine the dissipation in the inner region, we use the 
generalized Ohm's law, 

1   cfy      me   dJy 

~ c   dt   ~ ne2    dt   ' 

where J^y = Jy cos kx. Equation (64) gives 

J    =_ — k2ny, 
y      4TC  ° 

(64) 

(65) 

where k$ = (aJc . The dissipation caused by electron inertia in 
the inner region is 

z=+d. 

52ß 
v    1671 

f _2 
dz Mf 

z=-de 

*0 -       2 

a     — d  y(0) , (66) 

where de is the width of the tearing layer. 
Requiring that the system energy be equal to its equilibrium 

value [Kruskal and Oberman, 1958], we get 

52e  =   &2Wf + b2K + S2Q 0. (67) 

For the electron tearing instability, the fluid kinetic energy b2K , 
which is dominantly due to ions, is much smaller than the electron 
dissipation c^ß . Hence, from the relation 

SV   + 52ß   =0, 

we obtain the tearing layer width [Drake and Lee, 1977] 

d(k)   = 

(68) 

(69) 
2kn 

The growth rate of the instability can be determined by using 
the wave-particle resonance condition. In the case By = 0 this 
condition is 

ifcv (70) 

where  k  is determined from (62) by the requirement    A0' > 0 
(52Wf < 0). From (62) and (70) we obtain 

,2,2, 
7 

u2l2; kn X d 
(1-K A, ) 

[Xj 

3/2 ( 
1 t 

(1- - A
2) 

(71) 

(72) 

In writing (72) we have made use of the equilibrium relation (10). 
The growth rate (72) is larger by the factor 7C1/2 than the result 
obtained from kinetic theory by Laval et al. [1966]. 

In the case By # 0 the resonance condition (70) is modified to 

where   yfcn = kde/X . Equations (62) and (73) then yield 

kv. An 

2k2
0X 

(73) 

(74) 

which is also larger by the factor 7t1/2 than the result of Drake 
and Lee [1977]. 

Equations (71) and (74) demonstrate that the fluid model is 
reliable as a predictor of the parametric dependencies and the 
order of magnitude of the growth rate of collisionless tearing 
modes when B2 = 0 , both with and without By . The numerical 
factor missed by the model has to do with the precise details of 
the electron distribution function. 
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In the last paragraph, we have used the term "collisionless 
tearing" instead of "electron tearing," though the latter name is 
commonly used. It has been shown elsewhere (for the case By * 
0) that the full ion dynamics gives small logarithmic corrections 
to (74) (WBL, Appendix A]. In other words, the result (74) 
already includes the ion response, and there is no ion tearing 
branch of the dispersion equation. That being so, it is redundant 
to call this tearing instability electron tearing because in this case 
there is no other form of tearing. 

4. EFFECT OF CONSTANT Bn 

So far, we have benchmarked the fluid model by reproducing 
known results from kinetic theory for equilibria with Bn = 0 . 
We presume that a fluid model which has been demonstrated to be 
reliable for 5B=0 will work for equilibria with 5B*0, 
representative of the Earth's magnetotail. As discussed in WBL, 
what will change in the presence of a nonzero Bn are the particle 
orbits. We consider, at first, the case Bn= constant (equation 
(15)) which has engendered considerable controversy in the 
literature. 

In the presence of Ba the perturbed current has a component 
•/lz in the z direction which generates a perturbed magnetic 
field component Bly. In WBL, this component has been 
calculated by writing B! = V x Aj , using the Coulomb gauge V 
• Ai = 0 and the approximation d/dx « d/dz for perturbed 
quantities. Here we denote Vi^Ay, %x = Au , and write 

2 <2       fdy 
+ B 

iy 

Substituting (75) in (54), we have 

sV 
f      8TC J-n-   J 

dx 
,2 

Vl  + dx 

V r 
+ ■= Wx+B 

iy 

(75) 

(76) 

We take   %i = %x(i,i) cos kx .   In the outer region, we have 
[WBL, Appendix B] 

~ tt       2 ~ 
X   -* X ~ o, (77) 

which has a solution of the form <r*lz' . This solution has a jump 
continuity in its logarithmic derivative, specified by 

x/(Q+)-x'(Q-) 

X(0) 
■2k. (78) 

In2the Coulomb gauge, we can now write Bly
2 = k~2 (%" - £2 

%) . Then, the contribution of the last term in the integrand of 
(76) is - (axy /16K) A2' %2(0) . This has a clear physical 
interpretation: Bn reduces the magnetic free energy available to 
the tearing instability and hence has a stabilizing effect. 

The computation of the first three terms in the integrand of (76) 
is somewhat more involved. One of the complications introduced 
by Bn is that it introduces a phase shift that, in effect, couples 
the cosine solution^in x, i.e., \Jfc (z,f) cos kx with the sine 
solutions in x, i.e., y, (z,t) sin kx . Li the outer region equation, 

^ VV ^ + 5»£ ^ 
substituting 

VI =  Vc(
z'0 coskx + V (z>0 sin kx 

(79) 

(80) 

we obtain 

£    «.'■ 
h'"yc = h'(yc-kyc)--&s  -k\),        (81) 

kX 

H" \ = H (v" - k\) + ± (v; _ k%,    (82) 

where  h' s X~l tanhz / X .   Following the method outlined in 
Appendix B of WBL, we get 

Vc = vj0) ± E\bh'y(
s
0) + 0(E

2
) , 

V, = vf0) + E\bh'y[0) +0(e2), 

(83) 

(84) 

where the upper sign in (83) and (84) corresponds to z > 0 , the 
lower signto z<0,md b= 4/(k A0' X2) . The leading order 
solutions yc     and \j/       obey 

h     Vcj    = h {ycs   -kX yKJ) . (85) 

We now use (81) - (85) to calculate the first three terms in 52Wf 
These are 

V 

axy t,  f~'2      2~
2     A'"_2 

~'2        ,2-2       V" _21 + v, + * v, + — v; J (86) 

Integrating the right-hand side of (86) by parts and using (81) 
and (82), we get 

a 

'l6rc 
A°*2(0)+i 

. (0) 

-  (0) 
*'"~(0) 

J  dZ   H   [Vc 'JJ (87) 

where V (0) = Vc2(0) + ?^2(0) _ since -^o) ^ -^ (0) are 

both solutions of (85) and obey the same boundary conditions, 
the last two terms of (87) cancel each other exactly. Defining 

and using (87), we get 

sV. 

A0y
2(0) + A2x

2(0) 

v2(0) + x2(0) 

■^ *  (v2(0) + £2(0) .) 

(88) 

(89) 

We now evaluate 82Wc , which is due to plasma 
compressibility. If Bn is large and constant, then the inequality 
YTie « 1 is satisfied. Under these conditions the electrons have 
a stabilizing compressional contribution due to the bouncing 
motion between mirror points along a field line. However, the 
effect of ion compressibility, which comes into play because of 
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the quasi-neutrality constraint nel = n-%\ , is larger than the effect 
of electron compressibility. The magnetic free energy 82Wy is 
generally not large enough to provide energy for compressing the 
ions, and the mode is stabilized unless the wavelength is very 
large. In order to demonstrate this, we calculate 82WC from the 
fluid equations. From the linearized continuity equation, we get 

Note that an upper bound for b2Wf is obtained by setting % 
(0) equal to zero. Hence, from (57), a sufficient condition for 
stability is 

1 9nl 
V-u = -- 37 n   at 

- u • V\|/ — In n . 
dy 

Using the equilibrium relation (7), and defining 

dn 
1   dvf    i 

we rewrite (90) in the form 

V-u 
l_3n 

' n dt BrX 

3VX 

oA V 
3f+u-VV 

(90) 

(91) 

(92) 

Averaging (92) over an electron bounce period, we have 

<V-u> = --<^>--TT(Y<¥1>+5B <«U>),    (93) 
n BQX v        l y 

where < > indicates an average over the rapid bounce motion of 
the electrons. Since the bounce motion involves dominantly the 
outer region, we neglect the electron inertia term in averaging 
Ohm's law (41). We then obtain 

<E,   > -h< 
dyx 

\y' c    ^    3f    ^ 

<VU>B» (94) 

Using (44), (51), (93), and (94), we get 

k2 

<p   Vu> = -—j 
1 IB 

k2B„ 

16JI B 

»o<T
e 

+ TP <37V1> 

(95) 

Hereafter, to simplify notation, we shall drop the averaging sign. 
Equation (95) then gives 

sV f dx 
J   1671 

2     2 
kB0    ~2 —r v • 
2B_ 

(96) 

Equation (96) can be rewritten as 

sV 
k2B 

16rt    2B 
°     ZQ¥

2(0), (97) 

where 

■A0 + k/E > 0, 

which for £ « 1 , reduces to 

kX/E > 2 . 

(100) 

(101) 

Equation (101) is close to the sufficient condition for stability 
kX/E > 4/7t , derived by Lembege and Pellat [1982]. The 
inequality (101) implies that all wavelengths smaller than TtX/e 
are stable. For example, if we take X ~ 1 RE, E ~ 0.1 , we find 
that wavelengths smaller than 30 RE are stable. Of course, this 
does not necessarily mean that wavelengths larger than nX/z are 
unstable because violation of (101) does not imply instability. If 
one proceeds with the hypothesis that instability is possible for 
kX/E < 2 , it can be shown, following Lembege and Pellat [1982], 
that a long-wavelength ion tearing mode is impossible. We refer 
the reader to the work of Lembege and Pellat [1982] for further 
details. 

Attempts have been made to restore the ion tearing instability 
by invoking pitch-angle diffusion [Coroniti, 1980; Galeev, 1984 
and references therein] or intrinsic chaotic diffusion [Bächner et 
al., 1987], We now demonstrate that even in the presence of 
these effects, the most that we can get is some form of weak 
electron tearing and that there is no ion tearing. At first we note 
that occasionally, a source of some confusion in the literature has 
been the misleading premise that it is electron compressibility 
that stabilizes tearing in the presence of a constant Bn . From 
this premise follows the argument that if the electrons are 
removed by pitch angle scattering or intrinsic stochastic 
diffusion, then it is possible to neglect the electrons while the 
ions tear field-lines. Our fluid model clearly indicates that 
electron compressibility is less of a factor than ion 
compressibility for conditions typical of the magnetotail. 
Inspection of (95) shows that both ions and electrons contribute 
to 52WC , but the electron contribution to 52WC may be 
apportioned as [Te /(T,+ Te] 52Wc , whereas the ion 
contribution is [Tff^ Te] l2Wc . Since 7;« 5Te is typical in 
the magnetotail, this apportionment indicates that the dominant 
contribution to fluid compressibility comes from ions. 

In order to pinpoint the differences between our results and 
others in the literature, we refer the reader to the review by 
Galeev [1984]. Galeev's equation (91) gives the energy spent 
for plasma compression, in agreement with our &2WC . 
Subsequently, in the presence of pitch angle scattering, Galeev 
attributes a compressional term similar to 52WC entirely to 
electrons (see his equation (96)), and yet another contribution 
due to ions (his equation (97)). Our fluid model yields the 
compressional energy, 

CO 

z0 = 2 I dz exp(-2fc:) [l + tanh zA] . (98) 

Equation (97) agrees with (91) of Galeev [1984] (except for the 
area term axy which has been taken to be unity by Galeev 
without loss of generality). The constant z0 is estimated by 
Galeev from physical arguments; here, we evaluate (98) 
asymptotically to obtain 

zn s 1/* . (99) 

5V 
a 
 3 

167t 2Bl Y + v 
z0V

2(0) (102) 
eff 

where Vcff is the bounce-averaged effective collision frequency. 
Note that when veff = 0, (102) reduces to (97), as it should. (If 
veff » Y , then the factor 7/(7 + veff) can be approximated by 
y/veff). Thus S2^,. (our equation (102)) includes the 
compressional effect due to both electrons and ions, and that 
there is no separate ion contribution as Galeev's equation (97) 
suggests. For large veff (or equivalently, large stochastic 
diffusion), the stabilizing effect of     82WC     can be strongly 
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reduced. Under these conditions, it is possible, in principle, to 
recover an electron tearing instability, but there is no ion tearing. 
This conclusion supports the recent results of Pellat et al. [1991] 
who question the very existence of ion tearing, but contradicts 
the findings of Kuznetsova and Zelenyi [1991]. 

In view of the controversy in analytical theories, much can be 
learned from particle simulations. Unfortunately, electromagnetic 
particle simulations of collisionless tearing inevitably involve 
making compromising choices on such parameters as mjmi, the 
system   size   (which   determines   the   range   of   unstable 
wavelengths), and thex spatial grid size.   We have cited several 
such simulations earlier, and it is fair to say that in all of them, an 
instability with the theoretically predicted growth rate and 
characteristics of ion tearing has been very difficult to find. 
Since we believe that both electron and ion dynamics (which are 
tied by the constraint of quasi-neutrality) should be retained in 
simulations of collisionless tearing, we first comment on reported 
results from two-species simulations that include a   Bn   field 
Swift and Allen [1987, P.10,015] report that their previous 
unpublished work showed "no evidence of the development of 
any type of instability."    They also attribute correctly the 
observed stability to ion compressibility.   Zwingmann et al. 
[1990] report results mostly for the mass ratio  mjnti = 1 , with 
some discussion of a case with mjmi = 1/10 .  As they note, the 
case mjmi = 1   cannot distinguish between electron and ion 
tearing.  (If an ion tearing mode exists, its growth rate should be 
much larger than the electron tearing growth rate when the mass 
ratio is realistic.)   Their results show significant discrepancies 
with theoretical predictions [Schindler, 1974]. In particular, the 
growth rate observed in the simulation is up to an order of 
magnitude less than predicted by theory.    We attribute the 
growth of the instability in these simulations for small values of 
Bn to electron tearing, not ion tearing.  This hypothesis can be 
tested, of course, by a study which computes the growth rate as a 
function of mjmi '. 

Apart from two-species simulations, there are one-species 
simulations of the ion tearing mode in which the electrons are 
involved only as a static charge-neutralizing background 
[Terasawa, 1981; Hamilton and Eastwood, 1982; Swift, 1983; 
Ambrosiano and Lee, 1983; Pritchett et al, 1991]. It is clear 
from our previous discussion that these simulations cannot 
realistically simulate electron tearing modes. Furthermore, any 
inference on the viability of the ion tearing mode from these 
simulations is questionable because electron dynamics has been 
eliminated arbitrarily for reasons of computational convenience. 

We conclude this section with the remark that unless the Bn 

field is very small, field lines cannot reconnect to form islands in 
the linear regime. The striking contrast between configurations 
with Bn = 0 which tear easily to form magnetic islands and 
configurations in which significant values of Bn inhibit tearing 
is illustrated well by Figures 6.2.4 and 6.2.9 in Galeev's review 
paper. In Figure 6.2.4, islands develop at the separatrix where 
collisionless reconnection provides accessibility to a state of 
lower energy. In Figure 6.1.9, there is no well-defined separatrix, 
and the system sustains global compressional oscillations. 

5.   EFFECTS OF By AND SPATIALLY VARYING Bn 

WBL considered the effect of a constant By field 
superimposed on the two-dimensional configuration of section 4. 
Their analysis of the electron tearing mode dealt with the inner 
region dynamics using kinetic theory, but global aspects of the 
dynamics such as the bounce motion was neglected. The aim of 

the present effort is to explore the consequences of these global 
effects in the context of the improved asymptotic equilibria 
developed in section 2. 

At first, we consider equilibria in which B is constant, and 
the spatial dependencies of Bx and Bn are described in region 
1 (near-Earth) by (18) and (19), in region 2 (middle) by (20) and 
(21), and m region 3 (distant-tail) by (22) and (23), respectively 
As noted m section 2, the spatial structure of Bn in the near- 
Earth and middle regions are similar, except that the magnetic 
field is weaker and the current sheet is wider in the middle 
region. It is shown in Appendix A that the bounce period %be in 
region 2 is larger by an order of magnitude than zbe in region 1 
In region 3, since BR is vanishingly small, Tää is extremely 
large. J 

Certain conditions must be fulfilled for the electron tearing 
instability to occur. First, there must be magnetic free energy 
available to drive the instability; i.e., we must have d2Wf< 0 
where &Wf is given by (89). This means that the stability' 
parameter Ar must be positive. In standard analyses of 
collisionless stability of the tail (see, for instance, Galeev [1984 
and references therein]), Ar'is replaced by A0'. Note that this 
overestimates the range of unstable wavelengths because A,' 
(equation (78)) is negative. 

Second, the stabilizing compressional energy &2WC due to the 
bounce motion of electrons should not exceed the destabilizing 
term 8 Wf . We show, a posteriori, that in region 1, yxbe « 1 
but in regions 2 and 3, we have yxbe 2 1 and yTilt >> 1 ' 
respectively. The compressional stabilization is thus significant 
m region 1 but not so in regions 2 and 3. 

In regions 2 and 3, the effect of the electron bounce can be 
neglected. We are then back in the framework of WBL who 
obtained the dispersion equation for electron tearing modes 
neglecting electron bounce. From a kinetic analysis, carried out 
in Appendix B, we obtain the complex frequency co = coB + iy 
where ' 

», = «>.- 
te   0 

2^*0, 

;fcv 

Vlt    2*0i 
Ar 

(103) 

(104) 

in region 2. Here co, = * V„ , s0 is a constant which can be 
shown to have a numerical value of approximately 10 under 
typical conditions, I,= X(Bf +B^n/B0 and A,'= 8e/(*A0' 
A. ) « Ar . For comparison, we recall that if Bn~ 0, the real and 
imaginary parts of the complex growth rate are, respectively 
[Drake and Lee, 1977], given by 

co„. 

kv 
J = 

VT7 2*o L 
Ao 

(105) 

(106) 

In (103) and (104), all equilibrium quantities are evaluated at z = 
0. In particular, since y(0) / £(0) ~ ByJBn(z = 0). we can write 

2 A   ,        2       , 
a A0 +e   A? 

2        2 
a + e 

(107) 
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where   a =  By/B0 . If a ~ e , a necessary condition for 

instability is 

V = V+A
2' >°< (108) 

which gives 

a<l/V2. (109) 

Equation (109) implies that wavelengths larger than 2v2rcX (~ 
9 RE for X~ IRE) may be unstable. In order for the instability 
to grow, however, it must also satisfy the condition yrie >. 1 . A 
viable class of instabilities is obtained for krl > 3X ; these do 
obey the condition yibe > 1 f°r s0 = 10 •   vte  = 2\/s ■ 

If Sy « B2, i.e., e » a , the condition A/ > 0 for instability 
reduces to kX < a/e . As shown by WBL, this condition 
predicts unstable wavelengths which are much too large to 
account for reconnection events in the near-Earth and middle 
regions. 

We note that (104) and (106) have been obtained from a 
kinetic analysis, and except for a factor of 7t1/2 , can also be 
obtained from the fluid model. The fluid analog of (106) is (74), 
derived in section 3. The fluid analog of (104) has been derived 
in Appendix B, and is given by 

2knL U      s 

(110) 

As before, the results from the fluid and kinetic calculations differ 
by a multiplicative factor of rc1/2. 

In regions where yxhe > 1 , the destabilizing effect of By may 
be understood as follows. If By = 0 , Galeev [1984] points out 
that the energy spent for plasma compression is the work done 
by the perturbed plasma current generated by the perturbed 
pressure gradient, 

dx 
lv    " 

If 5^*0,(111) changes to 

dx 
:-   (},     B     -J,    B    ). 

c   *■   \y    n        \z    y' 

(111) 

(112) 

Now, if yibe« !• üien the bounce average of (112) should be 
taken, and the second term on the right-hand side of (112) 
averages to zero. On the other hand, if yibe SI , or yibe » 1» 
then there is no bounce average to be taken^and the second term 
tends to reduce the first term because J\yl J\z ~ By/Bz . 

There is some evidence in the numerical simulations of Swift 
and Allen [1987] that the presence of By enhances the tearing 
activity near z = 0 compared with the case By = 0 . (See their 
section 4.3.) Clearly, there is a need for two-species simulations 
including By using either asymptotic equilibria of the kind 
developed in this paper, or numerical solutions of the equilibrium 
Grad-Shafranov equation [cf. Voigt and Hilmer, 1987]. 

Finally, we comment on equilibria with spatially varying By, 
discussed in section 2.2. There we show that, for a class of 
pressure profiles, the spatial variation of By can cause the 
formation of an X point on the z = 0 line. We show, furthermore, 
that this can occur at near-Earth distances for average values of 
B and Bn characteristic of the plasma sheet The configuration 
thus formed is likely to be highly magnetically stressed. Under 
such conditions, rapid reconnection may occur at the separatrix 
in both the linear and nonlinear regimes. We conjecture that the 

collisionless reconnection rate in this geometry is likely to be 
much larger than the rates derived in this paper. Such a geometry 
calls for a separate treatment, and the exploration of that 
possibility is left to future work. 

6.   CONCLUSIONS 

This paper makes two main contributions to the problem of 
collisionless tearing modes in the Earth's magnetotail. The first 
involves the development of asymptotic magnetotail equilibria 
including all three components of the magnetic field, with realism 
in the modeling of the normal component of the magnetic field, Bn 

(x,z). The second involves the development of a fluid model that 
is physically transparent and accurate in reproducing the 
parametric dependencies of the growth rates of collisionless 
tearing modes calculated from kinetic theory. 

One of the significant conclusions of this paper is that the ion 
tearing mode, which has been the subject of considerable research 
and controversy over the last two decades, does not occur. This 
is true for both two- and three-component models of the 
magnetotail. We are not the first to suggest this, because 
Lembege and Pellat [1982] and Pellat et cd. [1991] have preceded 
us, albeit in the context of the simple two-component equilibrium 
(1). We find that for the two and three-component equilibria 
given in this paper that if there is a collisionless tearing 
instability in the magnetotail, it is the electron tearing mode. 

There are certain conditions that must be fulfilled for the 
electron tearing mode to be seen. A significant value of S„ in 
the two-component magnetotail, represented by (1), tends to 
suppress the instability. The reason for this strong stabilization 
can be understood in dynamical terms. In our view, the dynamics 
are a symptom of a deeper cause which has to do with geometry. 
The main cause of the stabilization of the tearing mode is that Bn 

destroys the separatrix at z = 0 . By contrast, if we set Bn = 0 
but include a By field, the separatrix at z = 0 is undisturbed, 
and electron tearing modes can easily occur. 

The main difficulty posed by the magnetotail is that all three 
components of the magnetic field can be significant. Then, the 
circumstances that favor electron tearing are those that minimize 
global features of the dynamics such as electron bounce, and keep 
the electron confined near z = 0 . It is intuitively clear that the 
By field tends to confine electrons near z = 0 , and hence helps 
the electron tearing instability grow. The asymptotic equilibria 
presented in this paper have regions where the stabilizing effect 
of electron bounce can be neglected and where the presence of By 

~ Bn can cause the excitation of electron tearing. A tearing 
instability in which field lines actually undergo genuine 
topological change does not occur unless Bn is very small. 
Unless topological change occurs, the instability is likely to 
saturate nonlinearly at a relatively low amplitude. We do not 
believe that such a weak instability can account for the dramatic 
signatures associated with current disruption and diversion 
during substorms. 

The instability is more interesting when Bn is zero. We have 
demonstrated that if we include By and allow it to vary spatially 
in a three-dimensional magnetotail equilibrium, then 5„can 
vanish at near-Earth distances. The linear as well as the nonlinear 
growth of electron tearing modes in such a configuration is likely 
to lead to interesting results and will be investigated in the near 
future. 

An important challenge for a theory of substorms is that it 
should account not only for the violent activity that is associated 
with substorms, but also identify conditions under which the 
magnetotail is stable.  A universal instability that occurs always 



19,430 
WANG AND BHATTACHARJEE: ASYMPTOTIC EQUILIBRIA AND TEARING STABILITY 

and spontaneously is likely not to be a correct explanation 
because that would suggest the magnetotail is always unstable, 
which is not observed to be the case. In this work, we have 
identified conditions under which electron tearing modes may be 
unstable and delineated regimes when they are not. It is our hope 
that this paper, as well as its forerunner (WBL), will stimulate a 
reexamination of old as well as new data in substorms with a 
renewed emphasis on the By field. Observationalists, many of 
whom we have cited here, have been aware over the last 15 years 
of the ubiquitous presence of the By field, varying spatially as 
well as in time before and during different phases of a substorm. 
What is required is a more systematic study correlating B and 
Bz with the occurrence of substorm onset. More two-species 
electromagnetic particle simulations, including all three 
components of the magnetic field, are also required, both to check 
analytic theory and to model realistically global features of 
magnetotail equilibria. 

APPENDIX A:   B OUNCE MOTION OF ELECTRONS 

An electron gyrating along a field line in the magnetotail may, 
under certain conditions, bounce between two turning points! 
Since Bn (x, z) = Bn (x, - z) , the z coordinates of the turning 
points may be written as z = + zt, where the constant z, is 
determined by the parallel energy of the electron, 

12      12 
2mvN = 2mv  ~^B   ~ K~\xB (Al) 

where u. is the magnetic moment. The bounce period is defined as 

-H (A2) 

where  / is the coordinate along a field line.  Using the relation 
dl IB = dllB, , we have 

T,=  4 
(_m\m    B_ dz 

z (l-\iB/K) 1/2 (A3) 

We recall that 5x~tanhz and Bn~ E(1 - z tanh z) . For  \z\ < 
1 , we use the approximations   Bx ~ z   and Bn~   e(l - z2) 
Since Bn (z = ± 1) ~ 0 , we need consider only the domain 0 < 
Izl < 1. Equation (A3) may be then approximated as 

ev.   o 
dz 

r  2        2 2,2,1/2 
[z  +e (1-z ) ] 

a-z2)[l-B(z)/B(zi)]m 
(A4) 

Defining u2 = 1 - z/zt, we get 

2 
8z 

£ V. 
du 

\-u 

1 2/! 2S2      ' 1 ~Z,  (1-M ) 
(A5) 

4 
£ V. 

[,,        2-1/2 
(1 - z()       tan {., /(I 

2.-1/2- 

If we take Bn = £ everywhere, as in Lembege and Pellat [1982], 
we get 

xb = 

8z, 

£ v. 

/,        2^'2 

i,uA-i/2 ,      (1+z<)     +h 

(l+z,)     -z, ] (A7) 

n      \ i 16 
3e v (A6) 

For zt ~ 1 , equation (A6) predicts a bounce period of xb = 25 s 
(for £ ~ 0.1  and vu ~ 2/s) .  We show below that this is much 
smaller than the bounce period in our asymptotic equilibria. 

The integral (A5) can be evaluated exactly to give 

Clearly, x4 -> =o as I z, I -> 1 ; this means that some electrons are 
lost and some have very large bounce periods. An average 
bounce period for the confined electrons can be obtained by 
averagmg over the distribution function of electrons. For fixed 
z we have 

(A8) 

where vt is the maximum parallel velocity above which the 
electron is lost. Note that (A8) underestimates the bounce period 
because it should be normalized by the fraction of confined 
electrons which is smaller than 1 . Since all bouncing electrons 
pass through z = 0, we take the distribution at z = 0 to be 
Maxwellian. We estimate vL » vte [B(z = 1)/E - l]l/2 

Asymptotic evaluation of the integral (A8) gives < -vb> =J 
3e7t/Ev„. For £-0.1, v,e~ 2/s , we get < xb > « 102s in 
region 1. Li region 2, since Bn is space-dependent, £ is replaced 
by £' = e I« E/4 , and the length scale is amplified by e1« (see 
section (2.1)). Then < x6 > is amplified by a numerical factor of 
approximately 4elf2, which gives <xb> > W3s . For y~ 10"3j 
we thus have y<Tfe> « 1 inregion 1, but y<xb> > 1 in' 
region 2. 

APPENDIX B: DISPERSION RELATION FOR ELECTRON 

TEARING MODES 

In order to keep this paper self-contained, we review here the 
derivation of the dispersion relation for electron tearing modes 
using kinetic theory. The main effort lies in calculating the 
perturbed current J, from the perturbed distribution function 
/la by means of the relation 

Ji  = ^ 1„ I dv vf    . 
i       a    a J ■'la 

/i«=^V, +/ltt' 

It is convenient to use (32) to write 

•'a 

We recall that [Laval et ai, 1966; Galeev, 1984] 

Hence, from Ampere's law, 

Ji =-~ v2A1 = i:?aJ^v/, 
we get 

dx 2  I Al + 72 
Ä. cosh (zA) 

la 

A 

(Bl) 

(B2) 

(B3) 

(B4) 

4TI 

c dv v f. 
la- (B5) 
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(B6) 

From the linearized Vlasov equation it follows that 

where d/dt H 3/3» + v • V and f0a is the Maxwellian 
distribution. Integrating (B6) along characteristics and 
substituting the result in (B5), we get 

The parallel conductivity crH can be calculated by using the drift- 
kinetic approximation for electrons. It can be shown that [Drake 
and Lee, 1977; WBL, 1990] 

CO *     2 ~ 
J   =i—^(o-fflV Z'(s) £,, 

"      4rcco 
(B12) 

s7 + 37)Al+  X2cosh%/X) 

A 
where 

CO *s   2, 

4rt co 
(co-co )s Z'(s) (B13) 

= -f Z qf~   j dv v(0 J v^E^O/cC) dt' whMe   ffl* = ^ f , = ffl/((fc|| VM) ,   and Z(s)   is the plasma 
a dispersion function. . 

The perpendicular conductivity    Ox is mostly due to the ion 
(B7)     polarization drift, since the E X B drift carries no current.  The 

full ion response [Cowley et al. 1986; WBL] essentially reduces 

to 

An        „ 
-— o   E. 

c   «->      i 

where   o  is the collisionless conductivity tensor which can also 
be written as (see, for instance, Horton and Tajma [1990]), 

4-> 

2 <* 

dt v(r) v(» - x) 

x L (»-x)exp[iccn - i* J v^O A'] . (B8) 

~       nmc — c       _ /T>I,<\ 
j       —i_(_toE±) = -«(D—TElt       (BU) 

1        B 47tVA 

where VA = B/(4TW mf)1/2 is the Alfven velocity. Note that 

CO 

Near z = 0 , in the inner region 13/3z I » 13/3* I ~ 1A ■ T1«511 

O    can be diagonalized in the form 

( o      0 
X 

0      o. a   = 

0   >t 

0 

V 0      0 

(B9) 

Z*     22 
V A    co. s 

1? m- -2 
 !2-   « -*- -^   -   10     « 1 

2. ,2 ,2 m 
*0VA        *0      - 

k„v. (B15) 

y 
for magnetotail plasmas.  We then recover the result derived by 
WBL, i.e., 

where * = x, x = az y - a, z , b = BIB = a, y + 0/2 with 
ay=By/B and a^BJB. We write Elx = a^, - ay£i,, 
En, = a>Ely+azElz, since a +a, = l. 

Defining Vl - Aly. Xl - ^ •  md ""I** ^ "^ "f 
perturbed quantity such as V in the form V(z) «p(«to - tat) , 

we get 

c    d2^        A ~ 
_ j- -   y •  O  • E, 

4it  <fz2 

= «,°II
E

II 
+
 
0

I
0

±
E

T' 

= (aja„ +  a2ox) E> + cy*,«*,, - o±) E, ,  (BIO) 

where aL & Cx = oT. Similarly, 

c    djC 

rfz 

<*z' K%   J 

( 2 
«v 

oca 
47tico y y 

2     ü|| ?. c a a. a, 
V y   z z 

f - s\ 
(B16) 

We now introduce two characteristic frequencies. One is (£>e = 
fc,vM . The other is C0E = V1. where X£ is the time it takes for 
an electron to travel a characteristic distance kr along x 
[WBL]. From the field-line equation 

dz 
B 

dx 
B  ' 

(B17) 

+ oa^o,,- a±) £y . 

it follows that if an electron travels k    along x, it must travel zQ 

along z , where zQ is given by the relation 

(Bll) z2   =  X.2 [1 - exp (2E/a)] (B18) 
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We then obtain [WBL] 

x  = 
E 

dx 

V 

dx 

AND TEARING STABILITY 

rda^ons10 matCh *" ^ regi0n to ^ ™ «*». we use the 

Ai = Tz losv outer   10- ~ <*z   to8 V , ■ (B28) 

2e v 
exp (£//&) . 

We introduce the strained inner variable 

z 1 
§  = 

(B19) 

(B20) 

' outer   ' 0-       afz 

A      — ~ I + =• 

innerr (B29) 

The left-hand side of (B27) can then be written as 
da. da. 

=    5    —*- 
d\        inner «    ^£ 

inner 

• da. 

where   8 s((ü/iv,J  (V,0)  and  ,0 = 1  if ö# > „    (as ^ 

S 3i bU-/5 r-ff tf «^ < ?« (« » ««*» 2). Tnelhear 
length L, is defmed by L, 3 X 5(z = 0) 50 . With these 
definitions. (B16) can be rewritten as 

outer 

[■ 

rfz^ 

/ 

= 5
eL

aoV(0)AJ + E0£(0)A2]. 

The right-hand side of (B27) gives 

(B30) 

/© 
Vo 

Ot  £ 
(B21) 

where a0 = By(0)/B0, Eo^B2(0)B0, and 

25e *0 (1 _ ©%) 

2       2 2(0) . (B31) 

f&  « (l-a)%)8^-2ifco 
~2        2 

CC0 + £0 

which is the same as (77) of WBL. 
Equation (B21) can be diagonalized as 

z' i%   ) ■ (B22) 
Using (B30) and (B31), we obtain the dispersion equation 

kv  A's       f       *^ 

2k2
0L*      T'co    Z(0)=°-      CB32) 

< 

-i   ^ 

«* ; 
= /© 

where 

2    2     „   "\ 
a0+E0     0 

y 

where 

«l   A 

"2   J 
(B23) 

A'  = 

2    ' 2    ' 
"o A; + e0 A2 

2        2 (B33) 

=  anV + £oX- 

a2  =  -£
0V + o„Z. 

(B24) 

(B25) 

(B26) 

As shown by WBL, a2 (X = 0) = 0 , which yields 

^°> = «Veo)%(0). 

The solution for flj is different in different regions 
In region 1, where m« 1 , the integration over z involves a 

bounce average which extends over the outer region We can 
then see the stabilizing effect of this bounce by noting that it 
tends to cancel out the perturbed current in the inner region and 
gives ¥ = x = 0 . In regions 2 and 3, however, we have yzh > 1 
and yxb » 1 , respectively. Integrating (B23) over the inner 
reglon, and using the "constant y" approximation, we get the 
jump condition e 

da 
1 

- («0 + 4) fl,(0) J <^/(£>.        (B27) 

z - 0 instead of taking ,t to the outer limits of the inner rJ™ 
h the rotation of WBL, A' = A; + iA/; however, if Cia f Z 
A,- ~ £ « A;, it is clear that the results derived by WBlTnH h 

r s derived^ WBL; Ä aL^a^Ä 
the growth rate.)   Solving the dispersion equation (B32)   we 
obtain   coÄ  andy , given, respectively, by (103) and7ir^ 
region 2 and (105) and (106) in region 3 ( M) " 

The growth rate derived from kinetic theory can also b, 
obtamed from the fluid model. The fluid analog6) hS 
already been derived in section 3. Here we derive easilv Z 
»0 og of (104). Recalling the heuristic discuslon gTve'n by 
WBL (see section 3, WBL), we have  y - m = a  k 1  /"   y 

SET*  "I" i ' ^ ' WWch ^ oUed CT68) with  A     given by (88).   If we now use (B25)  we m S 

bttht tS^jT ^ — - -rivedli'^rC 
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The linearized incompressible magnetohydrodynamic equations that include a generalized Ohm's 
law are solved for tearing eigenmodes of a plasma sheet with a normal magnetic field (Bn). In 
contrast to the Harris sheet with the equilibrium magnetic field [B=50 tanh(z/a)x], the 
two-dimensional plasma sheet with the field [B=50 tanh(z/a)x+5„z], in which the Bn field lies in 
the plane of the Bx field, has no neutral line if B„#0. Such a geometry is intrinsically resilient to 
tearing because it cannot change topology by means of linear perturbations. This qualitative 
geometrical idea is supported by calculations of growth rates using a generalized Ohm's law that 
includes collisional resistivity and finite electron inertia as the mechanisms for breaking field lines. 
The presence of Bn reduces the resistive tearing mode growth rate by several orders of magnitude 
(assuming B„/S0~0.1) compared with that in the Harris sheet model (Bn=0). The growth rate 
scaling with Lundquist number (5) has the typical S~3/5 (S~U3) dependence for large (small) wave 
numbers and very small values of Bn. For larger values of Bn, all modes behave diffusively, scaling 
as S . The collisionless electron tearing mode growth rate is found to be proportional to d] in the 
presence of significant Bn(> 10~2S0) and large *x(~0. la"'-0.5a-1), and becomes completely 
stable (y<0) for Bn/B0^0.2. Implications for magnetospheric substorms are discussed. © 1995 
American Institute of Physics. 

I. INTRODUCTION 

The tearing stability of the Earth's magnetotail has been 
a subject of considerable interest over the last three decades. 
The subject is considered to be relevant to the issue of sub- 
storm onset that is widely believed to occur at near-Earth 
distances, at about 10/?E or less (where RE is the radius of 
the Earth). 

It is well known that the resistivity of the magnetotail is 
so low that the plasma can be regarded as virtually collision- 
less. In such a plasma, finite particle inertia is a possible 
mechanism for magnetic reconnection. Hence, most theoreti- 
cal analyses of the tearing stability of the tail rely on kinetic 
theory.1-10 Electromagnetic particle-in-cell (PIC) simulations 
that follow individual particle dynamics in self-consistent 
electromagnetic fields have also been developed to study the 
stability of some simple models of the magnetotail.11-17 

While PIC codes do include, in principle, the relevant phys- 
ics at the microscopic or kinetic level, these codes cannot be 
used at the present time to study reliably global three- 
dimensional dynamics of the magnetosphere. On the other 
hand, global codes based on resistive magnetohydrodynam- 
ics (MHD) have been developed,18-22 and are routinely used 
to study the dynamics of the magnetosphere including the 
magnetotail. These codes generally assume the existence of a 
large plasma resistivity many orders of magnitude larger than 
the classical value. Although it is not clear whether the as- 
sumption of a large resistivity is justified, global resistive 
MHD codes have shed valuable light on the overall geomet- 
ric features of magnetospheric dynamics. 

In this paper, we study the linear resistive and collision- 

less tearing stability of the two-dimensional (2-D) magneto- 
tail. For Ohm's law, we use 

vxB 
E+ =vj+ 

me dj 

nel dt' (1) 

Here E is the electric field, B is the magnetic field, v is the 
plasma velocity, J is the current density, rj is the plasma 
resistivity, me is the electron mass, e is the electron charge, n 
is the plasma density, c is the speed of light, and dldt = dldt 
+ v-V. The Ohm's law (1), which is by no means complete, 
allows us to examine the tearing stability of the 2-D magne- 
totail for two mechanisms that can break field lines: resistiv- 
ity and electron inertia. Despite the simplicity of our Ohm's 
law, we will demonstrate that it provides insight regarding 
the conditions under which collisional as well as collision- 
less tearing modes are possible in the magnetotail. 

One of the issues brought out by our study is the impor- 
tant role of magnetic geometry on the tearing stability of the 
tail. We consider the simple model 

B = ß0 tanh(z/a)x+5„z, (2) 

"'Present address: Department of Physics, University of Alberta, Edmonton, 
Alberta, T6G 2J1, Canada. 

where Bn is a constant magnetic field in the plane of the Bx 

field. If Sn=0, the model (2) reduces to the Harris sheet [Fig. 
1(a)], which is well known to be unstable to resistive and 
collisionless tearing modes. We have known this for so long 
and with such certainty that we rarely find it necessary to 
emphasize that the reason why the Harris sheet is readily 
amenable to tearing is because when B„=0, we already have 
a neutral line at z=0. In the presence of this neutral line, a 
linear, periodic magnetic perturbation of the form, say, 
b sm{kx)i, produces neighboring equilibria with magnetic 
islands with lower energy than the initial state [Fig. 1(b)]. 
The geometry of the Harris sheet with a clearly defined neu- 
tral line favors topological change, and the tearing instability 
provides a mechanism by which the plasma can have access 
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(b) 

^iSSH^BB^— 
to a lower-energy state. In the presence of the resistive term 

he ea^8 f
hand;ide °f ^S"** ™™> and ^S 

tw I?BIed t0 aS FKR) Sh0wed ** there is a tearing 
mstabUny that has a growth rate proportional to ^7or 

SSvVe dTffi °f Vv\mUCh faSter Aan the time^ of resistive diffusion (which is proportional to rj) 

and Zlnv" haVC
k
disCUSSed in «* tat paragraph is obvious 

and well known, but it bears repetition because it allows us 
to contrast the geometric differences between the case 

Si B"f.0'If *' *°'the fidd lines beco™ ParaboTc 
and the neutral line in the Harris sheet is eliminated (Fig 2)' 
A linear perturbation of the form b sin(kx)i does not affect 
genmne topological change and create islands. Instead, wh 
we haVe is a neighboring equilibrium with a topology sunite 
to the initial equilibrium (indicated by dashed and solid £*T 
respectively, ,n Fig. 2). The main difference between th   two' 

SSffSt 
diffusion. It is extremely unlikelv th,t f   u, mere 

Jjhties that are virtually iX^^Z Sfo^d 

rap" tern       f" t0P°l0giCal ^ «-n ^ rap,d temporal signatures associated with substorms 
The ideas discussed above are borne out qualitatively bv 

the linear stability calculations presented in thVpaSr In ^ 
discussion above, we have chosen to »m T ■    P e 

« ■*-** became J^Z ISÄSH 
Ef" fPf»''" "«eloping inJ,ion T„ I "of 

na witnout B . While we do not deny these important dif 

ÄhTh      7 th3t M °VeremphaSIS °n Ss" P- bcle orbus have detracted attention from the simpler aZ 
more important geometrical issue stressed in this pa0er Our 

the linearized eigenmode equations for resistive and coUi 

iTs ecT S3 Tity of a model magneM iSw 
a w     n- •    ,        *       PrcSent numerical results on resistive 

II. METHOD OF ANALYSIS 

netic^eeldea
a
nd

Slab f^r^ ^ 3mbient Plasma and mag- netic held, and analyze hnear stability of the resistive and 
electron tearing modes in the magnetic field  2 TnIquiS 
num. tta normal magnetic field Bn gives rise to a' orce 

^«W^JZFZ Tltatlonal accelera- 
fluid MHr?equalTS  ^ ^ ^^ BnMr Sin^ 

+ V-(p0v) = 0, 

^o^- = -Vp+-r-(VxbxB+Vx 
4-7T 

(3) 

Bxb)-P£x,    (4) 

<?b 
<?/ = Vx(i»xB)-Vx,  -j 

c2   <? ^^VXb+SVxb)' 
HG. 2  TTie topology of field lines when the perturbation b=b sinto)2 « 
imposed on the equilibrium B=B0 tanh (z/fl)i+B„i. (    }    S 

(5) 

3858        Phys. Plasmas, Vol. 2, No. 10, October 1 995 

zWeroreandUr ^ 7?^ "* deSignated * *e -Script zero, and lineanzed dependent variables are without sub- 

Harrow, Bhattacharjee, and Wang 



script. For simplicity, we consider incompressible perturba- 
tions. The analysis of Wang and Bhattacharjee24 clearly dem- 
onstrates that fluid compressibility has a strongly stabilizing 
effect, and the assumption of incompressibility, therefore, bi- 
ases this analysis in favor of instability. By the same token, if 
one finds stability by this analysis, there is no doubt that the 
full dynamics including compressibility effects will yield an 
even larger parameter regime over which the plasma sheet is 
stable. We represent the two-dimensional (incompressible) 
perturbed velocity and magnetic fields by v=Vx(^y) and 
b=Vx(Ay), respectively, with d/dy=0 and d/dx=ikx. As- 
suming linearized perturbations of the form exp(i'/tJjc- icot), 
we obtain the following system of equations of for 4> and A: 

d2<t> d<f> dA 

dz' 

1? 

■=P -T- + q<j>+uA+—, 
dz dz 

d(j> 
= F—+ G<£+£A. 

dz 

(6) 

(7) 

Here we have used the following definitions: 

F=-bnp\^-i<o82
e' ■ikxBp\--iaS'( 

E = kx — i<ap -i(t)8' 
-l 

*2=. 

<»;(ov TRS 
Atra 

■qc 2   > 

rA=a 
V47rp0(0) 

<ob„ 

i<os: d2B bna) 
-7T + i<aÄ+-r— 
oz k. 

iaSl d 

Tz 
iü)8: 

q= 
ikx d2P 

U>2p dz2 

2D2 

•+■ 
iktB 

poi dz 
BP\~iu82

e 

bn(o(p/S — i(t)8e) 

-l 

ibnkx 
l-bl^-itoSl 

1 dp        k,B 

bnp dz (O 

and the following normalizations: 

Pa . .        A 

a 

t 

TA 

Po(0) 
>p(z), aBx 

>Mz), 

K.  yd r f\, 
4>rk 

>4>{z), 

txiJk- 
>x0 

B* >B(z) B~rK 

Equilibrium pressure balance dictates that g = abn/i
2

A. 
Equations (6) and (7) generalize the equations given in 

Ref. 25 by including the effect of the electron inertia term in 
Ohm's law. We investigate normal modes with tearing parity. 
At z=0, we use the boundary conditions <j>=0 and dA/dz 
=0. As z—>°°, the coefficients in (6) and (7) become con- 
stants and we incorporate evanescent conditions 
(?!>(z->oo)~C exp(-kxz) + D exp(-*z) [where K is a com- 
plex constant with a positive real part that is obtained from 
(6) and (7)], and A(z^°°)~exp(-kxz). 

Equations (6) and (7) are converted to a single fourth- 
order differential equation in </>, which is then solved by 
method of collocation with seventh-order splines.25 Com- 
parison with previously published numerical results26 for the 
resistive tearing mode indicates eigenvalues co of six digit 
accuracy. 

III. RESISTIVE TEARING 

The resistive tearing mode is examined with Se=0 in the 
eigenmode equations. The analytical results of FKR and 
Coppi et al.21 for the tearing mode growth rate in the Harris 
sheet (for the "constant-^" and "non-constant-i/f" modes, 
respectively) are as follows: 

y s 
us {\-kx) 
•1/3 1.2/3 

2\2/5 kxS
m>l, 

krS
U4<l,    iL«l. (8) 

The growth rates obtained from the numerical solutions of 
Eqs. (6) and (7) (bn = BJB0 = 0) are compared to the ana- 
lytic expressions (8) in Fig. 3. The numerical results shown 
in Fig. 3(a) clearly exhibit the transition from "non-constant- 
ip" modes to "constant-^" modes at kxS

U4~l, consistent 
with the predictions of analytical theory. In Fig. 3(b), we 
compare the analytical and numerical growth rates for a 
"constant-1//" FKR mode. The mode growth rate continues to 
scale as S~315 accurately in the high-S (>108) regime. 

We now examine the consequence of adding afl„ field to 
the Harris equilibrium, i.e., the equilibrium magnetic field is 
now given by (2). For application to the Earth's plasma sheet 
(where a is or the order IRE and the system size along x is 
of the order 102i?E), physically relevant values of normalized 
kx obey the inequality kx7z0.1. Since marginal stability 
without Bn occurs at (normalized) kx = l, we will examine 
modes with kx=0.5, unless otherwise indicated. Figure 4 
shows the spatial profiles of A and <f> for values of the Lun- 
dquist number 5 = 108 and the normal field component 
fc„ = lCT2. The growth rate of this mode is yrA=1.28xi(r7, 
which is an extremely weak instability. 

In Fig. 5, we show the growth rate as a function of bn for 
representative values of S. We see that the small growth rate 
of the mode in Fig. 4 is typical for a system with bn>\0~3, 
and that the growth rate decreases rapidly with increasing 
bn. Inspection of the curve for 5' = 1010 shows that, for inter- 
mediate values of bn, the growth rate scales as b~2n, while 
for larger values it scales as b~x. 

Figure 6 shows the dependence of the mode growth rate 
on the Lundquist number S for various values of bn. For this 
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FIG. 3. (a) Comparison of analytic and numerical estimates of the tearing 
mode growth rate as a function of wave number for the Harris equilibrium 
(bj Companson of analytic and numerical estimates of the tearing mode 
growth rate as a function of Lundquist number for the Harris equilibrium. 

wave number (*x=0.5) and ft^KT3, there is a transition 
from an S to an S dependence that occurs near S-IO8. 
The transition occurs at progressively smaller Lundquist 
numbers as bn increases. In contrast, for the Harris equilib- 
rium (bn=Q), the mode continues to persist with the S~3/5 

scaling for all values of S in the high-Lundquist-number re- 
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FIG. 5. Dependence of the growth rate on the normal component of the 
amb.ent magnettc field and on the Lundquist number. 

re- gime (5>106) [see Fig. 3(b)]. The transition to the <T   re- 
gime (u, which the growth rate is proportional to » not a 
fractional power of | for b^0 was reported 

Nishikawa and Sakai,23 and can be understood analytically 
from the calculations given in Refs. 28 and 29 To see this 
we note that for constant-temperature plasma, Eq   (3) con- 
trols the dynamics for the perturbed pressure (if we multiply 
the perturbed density by a constant temperature). Due to the 
presence of bn in the equilibrium, finite pressure gradients 
proportional to *„, must be included in the FKR analysis' 
The equation for the perturbed pressure is 

dpi 

dt 
+ "-V/>o = 0, 

(9) 

for incompressible displacements, which corresponds to set- 
ting y-0 in the equations for perturbed pressure in Refs 28 
and 29. After some algebra, it can be shown that the disper- 
sion equation of FKR is modified, and that finite pressure 
introduced by the presence of *„, yields a dispersion equa- 
tion of the form given by Eq. (15) of Ref. 29. This dispersion 
equation, in turn, predicts an instability with a growth rate 
scaling linearly with resistivity (see Sec. Ill of Ref 29) If 
the effect of plasma compressibility is included (y#0) then 
as shown in Ref. 29, the mode growth rate falls to zero'faster 
than 5    . 

loVioWioVfoVo12 

FIG. 4. (a) The eigenmode structure of A (real and imaginary parts) and (b) 
that of 4> (real and imaginary parts) for the parameters £,=0.5, 5 = 10s and 
£. = 10   . ' ' 
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and b„ nonzero 
large b„. 

Dependence of the growth rate on S and b, for k =0 5 For S> ID8 

y~S'K For5<108, y~S 1 for small bn and y~S~' for 
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FIG. 7. Dependence of the growth rate on the Lundquist number and wave 
number for b„ = 10~5. For 5>108, y~S~l. For 5<10s, y~S' 3/5 for large k 
and y~S'm for small k,. 

FIG. 8. Comparison of analytic (from Ref. 30) and numerical growth rates 
[from Eqs. (6) and (7)] for the collisionless tearing mode for the equilibrium 
magnetic field (10). 

We believe that the conversion of an instability that 
grows as 5_3/5 to one that grows as S~l and becomes even- 
tually indistinguishable from diffusion, is symptomatic of a 
deeper geometrical cause. As we have shown, this transition 
is absent when bn=0, and appears even for an extremely 
small value of bn(=l0~5). We contend that the transition to 
the 77 regime (growth rate proportional to S"1) for even a 
small but positive value ofbn indicates the resilience of equi- 
librium (2) to the resistive instabilities that are favored when 
an equilibrium can undergo topological change. 

In Fig. 7 we have plotted the growth rate for a few 
different wave numbers with a very small bn(=10~5). For 
10 <5<108, the growth rate behavior is Harris-like: propor- 
tional to S~3/5 for £.,=0.5, 0.1, and proportional to S~m for 
^=0.01. However, both long- and short-wavelength modes 
are in the 77 regime for sufficiently large Lundquist 
numbers—a result that has no analog in the Harris equilib- 
rium. 

The overall low growth rates for typical plasma sheet 
parameters, motivates us to look at collisionless effects in 
Ohm's law. We now report the results when electron inertia 
[the second term in Eq. (1)] provides the mechanism for 
breaking field lines. 

IV. COLLISIONLESS TEARING 

The collisionless tearing mode is examined with S=°° in 
the eigenmode equations (6) and (7). We have tested our 
numerical algorithm with the analytical results of Ottaviani 
and Porcelli30 using their equilibrium: 

B=B0 sm(irz/a)x+Byy, (10) 

with periodic boundary conditions at z=±a. Equilibrium 
(10) has magnetic shear, but no normal magnetic field. Otta- 
viani and Porcelli obtain 

y~kxSe,    %8el{k2
xTr)>\, (11) 

where lengths and times are normalized to alir and 
a(4irp0)

l/2/(£07r), respectively. Figure 8 is a comparison of 
Eq. (II) with our numerical solution of Eqs. (6) and (7) using 
£e=0.25. With this check of the collisionless results in the 
absence of a normal equilibrium magnetic field completed, 

Phys. Plasmas, Vol. 2, No. 10, October 1995 

we return to the modified Harris sheet equilibrium [Eq. (2)] 
to examine the effect of a normal magnetic field. 

Figure 9 shows the typical spatial profiles of A and <f> for 
the value of Se-I0~l. Comparison with Fig. 4 indicates that 
there is little difference in the qualitative spatial structure of 
the perturbed flux. The perturbed streamfunction, however, 
exhibits fine-scale oscillatory behavior, whereas the resistive 
<f> exhibits predominantly exponential decay. In the Appen- 
dix, we demonstrate that the wave number of the oscillations 
along z scales approximately as kz~kxlbn. This dependence 
on bn prevents the accurate determination of numerical solu- 
tions for Z?„<10-6 using our numerical method. 

In Fig. 10 we show the growth rate as a function of 
normal magnetic field bn for values of the electron inertial 
length <5e=0.1,0.026 and wave number ^=0.1, 0.5. There is 
a nonmonotonic dependence of growth rate on i?„ near 

0     2.5    5.0   7.5   10.0 
z 

(» 

(c) 

0     2.5    5.0   7.5   10.0 
Z 

FIG. 9. Eigenmode structure for collisionless tearing with 4=10"', 
£,=0.5, and £„ = 10~2. (a) Real and imaginary parts of A. (b) Real part of 4>. 
(c) Imaginary part of <f>. 
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ma 10. Collision!«« tearing growth rate as a ftinction of b   for the indi 
cated wave numbers, (a) S =0 1   (b) S -nme. Tk.   i T 
Earth's magnetotail has ^-10  '' ' ™e P'aSma Sheet ,n the 

£„ 10 , with a local maxima that shifts to larger b with 
mcreasmg wave number. The variation of the growth rate 
with b is about an order of magnitude over five decades of 
b and is independent of bn for bn<\0~\ All modes are 
stabilized completely for sufficiently large b ■ the * =0 5 
mode is stabilized for *„>0.35, and the kx~0.\ mode is 
stabilized for bn>0.2 (for the indicated values of 8) This 
form of electron tearing is extremely weak, particularly if 
*„ *0. If the effect of plasma compressibility is included we 
expect that the collisionless mode will be stabilized for sig- 
nificantly lower values of bn, as demonstrated in Reft. 5 and 

The dependence of the collisionless tearing growth rate 
on the electron inertial length is illustrated in Fig 11 For the 
indicated values of wave number and bn the growth rate in 
this range of St varies as 82

e. This dependence yields lower 
growth rates than that of Ref. 30 {y~kxSt). Since we have 
confirmed the correctness of the result of Ref. 30 earlier for 
b„-0, we attribute the different scaling to the choice of the 
range of *, and St, and more importantly, to the presence of 
a normal magnetic field component, which weakens the in- 
stability considerably. 

To see the combined effect of the resistive and electron 
inertial terms in Ohm's law, we note that these effects enter 
the equations in the form (ignoring the spatial effect of the 
normalized density) S^-iuS]; so for electron inertia to 
have a significant effect on resistive tearing, it is necessary to 
have \^SeS^\. In the presence of b„, since M is small and 
de is a very small number, one has to consider extremely 
large values of 5 before the effect of 8e can be visible 

We emphasize that the simple form (1) of the general- 
ized Ohm's law does not include all of the relevant collision- 
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the growth rate is proportional to 8]" ™   "~   °L FOr theSe cases" 

^nAl^T^ FOr inSt£mCC' ln the ab— ot resistivity, the electron inertia term produces narrow non- 
deal spatial scales of the order Qf «w non 

altered qualitatively by the presence of other terms (such as 
the pressure tensor term). Such a simple Ohm's law caTtTa 
a restneted f       of electrQn ^ ***** 

the simplicity of our Ohm's law, we have shown here ma trl 
normal magnetic field has a strongly stabilizing effect on Ae 

sToanSr     ' rdePendem °f WhCther 3 C0llis'°-1 or a coUi sionless mechanism breaks field lines. 

V. DISCUSSION AND SUMMARY 

The nominal near-earth magnetotail plasma sheet is ap- 
proximately parametrized by bn~lQ^ £.10-3 (in u^f 

f°M0 8CSSheCt ralf"thiCkneSS a) 3nd » Alfv- '- TA   10 s, which normalizes our numerical results. The Lund- 

^Z^^uTTbased on classical collisi°^ typically 5   10  . It has been argued that microturbulence 
can cause enhancements of vby several orders of magnitude 
Even for S values as small as 104, Fig. 6 suggests thaffor the 
nominal magnetotail, the growth rate of the resistive tearing 

rtd Kder r~10    S- ™S 1S a ^ weak -stabil' ity, and cannot be a candidate, even for the sluggish growth 
phase of a substorm, which can last as long as 15 h 

itv ^"entl°" then sh!fts t0 the collisionless tearing instabil- 
ity The growth rate of the type of electron tearing considered 

elt ofT dTaSeS raPJdly 3t ValUCS <* **- *™ 
n R s 17 TT magnet0tail: We Relieve, as discussed 

in Refs. 17 and 24, as well as in the Introduction of this 
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paper, that the stabilization found analytically as well as nu- 
merically here is symptomatic of a deeper cause that has to 
do with geometry. Unless Bn=0, there can be no genuine 
topological change due to a linear instability, and the pictures 
presented in the Introduction truly capture the essence of 
many elaborate calculations that find stability with respect to 
tearing modes in the presence of Bn. The bunching of neigh- 
boring field lines in Fig. 2 suggests that plasma compress- 
ibility is likely to play a strong stabilizing role. It should be 
noted that we have chosen to omit the compressibility effects 
here at the very outset due to our choice of the representation 
of v, and the modes stabilize due to the effect of Bn. If 
compressibility is included, as in Refs. 5 and 24, the stabi- 
lizing role of Bn would be seen to be even more drastic. 
These conclusions do not change significantly if a constant 
By field is included in the analysis, unless Bn itself is very 
small. 

In the last 20 years of research on collisionless tearing 
modes in the magnetotail, of which Refs. 1-10 is a partial 
record, there has been considerable emphasis on sophisti- 
cated calculations of particle orbits and the possible ways in 
which the details of orbits may alter the complex conductiv- 
ity tensor that relates the perturbed current density and the 
perturbed electric field. Too little emphasis has been given to 
considerations of geometry and topological change, which, 
in our present view,17 is at the heart of the debate on recon- 
nection if it is to be distinguished from simple diffusion. 
Geometric considerations in the presence of Bn suggest to us 
that the tearing instability (collisional or collisionless) cannot 
be found to grow as a robust instability merely by adding 
additional refinements to Ohm's law (such as pressure 
anisotropy31) unless the equilibrium (2) is qualitatively al- 
tered so that Bn is reduced, at least locally, to near-zero val- 
ues. Such a qualitative alteration of the equilibrium may be 
affected in a number of ways, discussed, for instance in Refs. 
17 and 24. Unless such qualitative changes occur, the plau- 
sibility of tearing instabilities as a mechanism for substorm 
onset at near-Earth distances remain in serious doubt. How- 
ever, other MHD or kinetic instabilities are possible, and are 
currently the subject of active research. 
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APPENDIX: OSCILLATORY BEHAVIOR OF 
PERTURBED STREAMFUNCTION 

Far from the current sheet, p goes to zero exponentially. 
Taking the limit as 5_l and p go to zero in (6) and (7): 

1- 
c»28l 

d2cß 

_Aki+*iKK_ 

ibnkx 

a>282 <t> 

+ 2   - 

+ 

0) 

ibn 3A 

1- 
ikxbn 

col Si     a,2 S; ~dz 

-12+5; 
a> 

lib, 

kxS] 
A, 

BlA 

dz 
T = kxA. 

(Al) 

(A2) 

Equation (A2) implies an exponential variation of the mag- 
netic potential with scale length k~\ as indicated in Fig. 
9(a). Substituting (A2) into (Al) yields 

dzA -K\\\- 
<*>282 

d2(j> 

dz 
~ki 

,    4ikxb. 

+ 2\-2-K 
ibnkx 

w28] 

1- 

2'fcA 
co282 <$> 

ikxbn\ d<$> 
2*2 o)ls: co2S2, dz ' 

(A3) 

Assuming that <£~exp(a,z), we obtain az=±kx and 

(co282
e-b2

n)a
2-(k2

xco282
e + 4ikxbn8

2-k2
x-2ikxbn) 

-2(-ibnkxS
2

e + co2S2
e-b2

n + ikxbn)az = 0. (A4) 

Hence, with \<x)282
elb

2
n\<\ and \a2u>282

elb\ |<1, the root 
with the upper sign becomes 

az~-ikx/bn + (l-^l-k2
xa>282/b2

n). (A5) 

The oscillatory character in Figs. 9(b) and 9(c) is evidence 
that the mode with az scaling as Eq. (A5) appears in the 
eigenmode for (f>. 
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Growth, sudden enhancement, and relaxation of 
current sheets in the magnetotail: Two-dimensional 
substorm dynamics 

Z. W. Ma, Xiaogang Wang, and A. Bhattacharjee 
Department of Physics and Astronomy, University of Iowa, Iowa City 

Abstract. A two-dimensional, low-dissipation magne- 
tohydrodynamic simulation is used as a model for mag- 
netospheric substorm dynamics. The simulation begins 
from a Grad-Shafranov equilibrium of the magnetotail 
including the Earth's dipole field. This initial configu- 
ration is driven by a continuous electric field (of IMF 
origin) which induces equator ward flows. A thin current 
sheet develops algebraically in time, spanning Y-points 
that stretch from the mid-tail region (~ 30 RE) to the 
near-Earth region (~ 10 RE)- In the late growth phase, 
rapid thinning of the sheet and near-explosive intensifi- 
cation of the current density are observed. The onset of 
a partial current disruption results from the formation 
of small islands in the near-Earth region. Numerical 
results are compared with observations. 

Introduction 

There is increasing appreciation that the key to the 
problem of substorm onset lies in the growth phase 
when the magnetotail is prepared for the violent re- 
laxation dynamics that follows. Typical phenomena ob- 
served during the growth phase [McPherron, 1970] indi- 
cate an intensification of the cross-tail current which re- 
sults in a tail-like reconfiguration of the nightside mag- 
netic field at near-Earth distances (< 10 RE) [Kauf- 
mann, 1987]. Observations show that the thickness of 
the current sheet can be reduced to less than 1 RE in 
the near-Earth region before the onset of the expansion 
phase [Mitchell et al., 1990; Sergeev et al., 1990; Lui 
et al., 1992], In particular, Ohtani et al. [1992] report 
a near-explosive intensification in the cross-tail current 
density during a short interval (< 1 min) just before 
onset, after a period of sluggish growth (~ 0.5—1.5 hr). 
These observations are of great interest because they 
show the presence of two distinct time scales in the 
growth phase. 

The onset of the expansion phase involves a sudden 
reduction of the cross-tail current in the near-Earth re- 
gion (7-11 RE) [Lui et a!., 1992]. The current sheet 
disruption region is localized (< 1 RE) and the disrup- 
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tion of the current is also partial, typically involving 
about 20% of the cross-tail current [Lui, 1978; Ohtani 
et al, 1992]. 

There have been some magnetohydrodynamic (MHD) 
simulations of current sheet formation and rapid recon- 
nection in the near-Earth magnetotail driven by an ex- 
ternal electric field that induces an equatorward bound- 
ary flow [Lee et al, 1985; Birn and Hesse, 1991]. A 
common feature of all these simulations is that the char- 
acteristic Lundquist number S is typically below 103. 
An important consequence of the large value of resistiv- 
ity used in these simulations is the prompt creation of 
a near-Earth neutral line (NENL) and rapid reconnec- 
tion, with large earthward and tailward flows near the 
X-point, and subsequent ejection of a plasmoid, quali- 
tatively consistent with the NENL model of substorms 
[Hones, 1979]. 

Even if we assume that anomalous resistivity is in- 
deed generated by some form of fluid or microturbu- 
lence, it is not obvious whether one can rely on such 
turbulence to bridge the enormous gap between the clas- 
sical Spitzer value and the values used in the numerical 
studies cited above. Then an interesting issue that de- 
serves attention is the dynamics of the magnetotail in 
the high-5 regime, and the qualitative differences with 
the low-5 regime. 

In the present paper, we present numerical results 
from a two-dimensional, high-5 simulation of the mag- 
netotail, driven by sub-Alfvenic equatorward boundary 
flows. We assume the resistivity to be constant, with- 
out an ad hoc current-dependent or spatially localized 
enhancement factor. We integrate numerically the com- 
pressible resistive MHD equations using a Runge-Kutta 
finite-differencing scheme that has an accuracy of fourth 
order in time and second order in space [Ma et al., 1995]. 
Exploiting the symmetry of the initial conditions, we 
carry out the numerical simulation in half of the physi- 
cal domain in the x—z plane, with x G (—6, — 52)RE and 
z £ (0,15)RE- With a 151 x 121 array and a nonuni- 
form mesh, we are able to resolve 0.05 RE in x and 
0.03 RE in z. We too are limited by the available nu- 
merical resolution, but the Lundquist number specified 
in our simulations is approximately 105 (including the 
effect of numerical resistivity) which is about two orders 
of magnitude higher than in previous numerical stud- 
ies, and high enough to explore an asymptotic regime 
in which several qualitatively new dynamical features 
become evident. 
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Numerical Model and Simulation 
Results 

We use the standard GSM coordinates and assume 
that y is an ignorable coordinate. All variables are 
cast in dimensionless form: in particular, distances are 
scaled by 1 RE, and time is scaled by the characteristic 
Alfven time (~ 6 s). The magnetic field B is repre- 
sented as 

B = V*xy + flyy. (1) 

The initial equilibrium is obtained by solving the Grad- 
Shafranov equation numerically. We start with the 
magnetic field of the 1989 Tsyganeko model [Tsyganeko, 
1989], specify two free flux functions and iterate numer- 
ically till we converge to an equilibrium. Due to the 
presence of a significant B2 -component at near-Earth 
distances, such an equilibrium is generally stable with 
respect to resistive tearing instabilities [Harrold et al, 
1995]. Since free reconnection is thus ruled out, we are 
motivated to investigate the role of forced reconnection, 
driven by the solar wind. 

An electric field, 

Ey = £0{0.6 + 0.4tanh[(3(zi + x) + 2x2)/x2]} ,   (2) 

is imposed at z = ±15RE, where E0 = 0.04, xi — 6RE, 

and X2 = 46-ftß. The functional form (2) is a simple rep- 
resentation of an electric field that peaks at near-Earth 
distances and decays monotonically with increasing \x\. 
The boundary perturbation results roughly in a uni- 
form IMF outside of a flared magnetopause. The equa- 
torward inflow vz due to the electric field (2) is of the 
order of 40 km/s, which is less than 4% of the charac- 
teristic Alfven speed (~ 1000km/s), roughly consistent 
with observations. Free boundary conditions are used 
at the earthward and tailward boundaries of the simu- 
lation box for all dependent variables except <£ which 
obeys d^/dt = 0. 

(a) Early Current Sheet Thinning and Y-type 
Geometry 

The equatorward flows at the lower and upper tail 
boundaries are generated by the imposed electric field 
(2). The plasma flow is mainly earthward in the near- 
Earth region and tailward in the flared mid- and dis- 
tant tail. An X-type neutral line with an extremely 
small separatrix angle is formed in the region around 
x = -30 RE, where the 5z-field is initially weak, and 
eventually stretches to form Y-points, with a thin cur- 
rent sheet of finite length spanning the Y-points [Sy- 
rovatskii, 1971], which is a generic feature of high-5 
simulations of forced reconnection [Biskamp, 1986; Ma 
et al, 1995]. 

Whereas the tailward end of the thin current sheet 
remains approximately at x — —30 RE, the earthward 
end stretches as the earthward Y-point penetrates into 
the near-Earth region. This is evident by inspection of 
Figures la-c for the cross-tail current Jy. (Note that 
Jy = Jy(^) in the initial equilibrium.) The dipole mag- 
netic field close to the Earth causes the Poynting flux 

to be directed towards the near-Earth region where it 
enhances the thinning of the plasma sheet. The current 
sheet spanning Y-points penetrates to near-Earth dis- 
tances, with a length of approximately 20 RE along the 
neutral sheet. 

We are now well into the growth phase, and in real 
time, nearly 30 min (300r^) into the simulation. The 
magnetic flux piles up locally in the near-Earth region 
due to the externally driven inflow, and reconnects in 
the mid-tail region. Small secondary islands are seen 
to form within the current channel (Fig. lc), but these 
secondary islands are too small to break up the spatially 
extended Y-point geometry. 

(b) Near-explosive Current Intensification 

Before continuing, we summarize some recent analyt- 
ical results [Wang et al, 1995] which are useful in in- 
terpreting the results of the present simulation. Wang 
et al. [1995] show that under the influence of inward 
boundary flows in a Harris equilibrium, the current 
sheet (spaning Y-points) exhibits a transition from a 
sluggish linear growth phase to a rapid nonlinear phase 
in a characteristic time scale TN = (r^rgr^)1/5, where 
r0 is the characteristic time scale of the imposed bound- 
ary flow, TA and rR are the characteristic Alfven and 
resistive diffusion time scales, respectively. (Note that 
the new characteristic time scale rN has a much weaker 
dependence on resistivity (~ if1/5) than the character- 
istic time scale in the Sweet-Parker model (~ i}~ll2)). 
Furthermore, the current sheet amplitude at the sepa- 
ratrix grows as Jo{tJTA)2 in the linear regime, and as 
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Figure 1. Projection of level surfaces of the cross-tail 
current on the x - z plane at different times during 
dynamical evolution. 
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Figure 2. Time-history of (a) Jy at x = -10, 2 = 0.2, 
and (b) Jt at x = -8 (after integrating over z). 

is a constant, independent of 77. The large multiplicative 
factor (TR/TQ)

1
/

2
 accounts for the rapid enhancement of 

the current sheet. 
The initial state (Fig. la) of our magnetotail simu- 

lation includes the Earth's dipole field which makes an 
analytical treatment difficult. However, as the plasma 
sheet thins and the Bz-field is reduced substantially 
over an extended region, the current sheet spanning Y- 
points penetrates to the near-Earth region (Fig. lc), 
and the geometry (from x = -10 RE tailward to about 
x = -30 RE) resembles qualitatively the geometry of a 
Harris sheet. In Figure 2a, we plot the cross-tail cur- 
rent Jy as a function of time at the near-Earth point 
x = -10 RE, z = 0.2RE. We note a rapid enhancement 
in the amplitude of the current density at t = 280rA, 
qualitatively similar to that seen in our earlier Harris 
sheet studies. This strong enhancement of the cross- 
tail current density (by more than 20 times of its initial 
value) occurs in the thin current sheet while the lobe 
magnetic field remains almost unchanged. (As men- 
tioned above, nonuniform grid points are used to re- 
solve the thin current sheet; there are approximately 
50 grid points in the thin current sheet.) By this time, 
the overall thickness of the plasma sheet has dropped 
to less than 5% of its initial width. 

Figure 2 shows the time evolution of (a) the cur- 
rent density Jy and (b) the integrated current Jt at 
x = —8 RE- The sudden intensification in the cross-tail 
current density Jy is seen to be more than 20 times its 
initial local value within about 6 min (Fig. 2a). This 
time scale in our simulation is somewhat slower than the 
time scale reported by Ohtani et al. [1992]. The ana- 
lytical scaling derived by Wang et al. [1995] suggests 
that the Lundquist number in our simulations must be 
50-100 times higher than what it is if we are to real- 
ize a s.udden intensification time scale of 1 min or less. 
Such high Lundquist numbers will yield results that are 
in better agreement with observations, but cannot be 
simulated reliably using our present code. 

In phase with the explosive enhancement of the cur- 
rent density Jy, the magnetic field Bx and the integral 
current Jt also exhibit rapid temporal changes. The 
flow-component vx during this entire growth phase, be- 
fore the onset of the expansion phase, continues to be 

dominantly earthward, although it is reduced locally 
in the vicinity of secondary islands in the near-Earth 
region (Fig. 3). This is qualitatively consistent with 
observations at |z| < 20 RE [Baumjohann et al, 1990]. 

(c) Partial Current Disruption 

After the near-explosive growth phase, the onset of 
the substorm expansion occurs in a typical event when 
the current density Jy decreases and the magnetic field 
dipolarizes in the earthward side of the near-Earth Y- 
point. We indeed observe that the integrated current 
decreases by about 20% (Fig. 2b) due to the occurrence 
of current disruption. In our two-dimensional simula- 
tion, this disruption coincides with the expulsion of the 
flux rope due to enhanced reconnection at the Earth- 
ward end of the current sheet as the near-Earth Y-point 
starts moving tailward. At this point, the flow velocity 
in the disruption region changes direction and becomes 
tailward. Note that the flow remains always earthward 
in Figure 3a. It is also earthward in Figure 3b till the 
occurrence of the partial current disruption. The tail- 
ward flow in our simulations is confined in a narrow 
layer along the z-direction with a thickness of the order 
of 2RE- 

The simulation described above is two-dimensional 
(i.e., d/dy — 0 for all times) and cannot describe the 
full complexity of substorm evolution in the expansion 
phase. In particular, important features of the three- 
dimensional convection pattern, the current diversion 
and the closure of the current system in the ionosphere 
cannot be described by a 2D model. By constraining the 
dynamics to be 2D, it is as if we have not left the mag- 
netotail much room to evolve except to undergo recon- 
nection as a mechanism for partial current disruption. 
This is the main reason why we do not dwell further 
on the results of the simulation after the onset of the 
expansion phase. It is quite possible that the stressed 
magnetotail with the embedded thin current sheet may 
be unstable to instabilities that break the symmetry 
condition d/dy = 0. Such instabilities may have either 
an ideal MHD character (such as a current-driven kink 
or a pressure-driven ballooning considered by Roux et 
al. [1991]) or be of kinetic origin (such as the cross-field 
current instability considered by Lui et al. [1991]). If 
these instabilities can be shown to exist with appropri- 
ate ionospheric boundary conditions, they can poten- 
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Figure 3. Time-history of the flow velocity vx. 



tially accelerate the transition time to the dipolar state 
which is much slower in our two-dimensional simulation 
than observations suggest. 

Summary and Discussion 

In summary, we describe the following possible sce- 
nario for a substorm. At first, under the influence of 
steady inward boundary flows attributable to the solar 
wind, an X-type line with a very small separatrix an- 
gle is formed in the mid-tail region. The reason why 
the mid-tail is favored for initial separatrix formation 
over the near-Earth region is because the Bz field is 
weaker at mid-tail. The mid-tail is also favored over 
the distant tail because the driving electric field (2) is 
stronger in the mid-tail than in the distant tail. If the 
Lundquist number is high, this short-lived X-type ge- 
ometry is immediately transformed to a geometry with 
a thin current sheet spanning Y-points that stretches 
from the mid-tail to the near-Earth region. 

Following a sluggish growth phase, forced (or driven) 
reconnection in this Y-type geometry leads to a near- 
explosive intensification of the current density in the 
near-Earth region (though the reconnected flux is small 
for high-5) just before the expansion onset. 

After the sudden intensification of the cross-tail cur- 
rent, and further thinning induced by flux pile-up, 
forced reconnection in the near Earth region will cause 
disruption of the cross-tail current. This disruption in 
the present simulation diverts about 20% of the inte- 
grated current. The disturbance then propagates tail- 
ward, and a flux rope (with By ^ 0) is expelled as the 

magnetic field dipolarizes in the near-Earth region. We 
have discussed at the end of the second section that the 
real dynamics of the magnetotail at the expansion on- 
set are likely to involve three-dimensional features not 
included in our two-dimensional simulation. 

We conclude with comparisons to two related major 
substorm models: the NENL model and the current- 
disruption (CD) model. A key observational difficulty 
of the NENL model is the lack of strong tailward flow in 
the near-Earth region which should ostensibly be a con- 
sequence of near-Earth X-line reconnection. A modified 
X-line model, which relocates the X-line to the mid-tail 
beyond 20 RE downstream, cannot be easily reconciled 
with the so-called "Kiruna conjecture" [Kennel, 1992] 
that places the location of the expansion onset at near- 
Earth distances. Our present results suggest that these 
difficulties may be resolved by the concept of Y-points 
that extend from the near-Earth region to the mid-tail 
region connected by a thin current sheet (of spatially 
nonuniform amplitude). In this geometry, we do not 
obtain the strong tailward flow and the large extended 
region of a southward B2-field that are characteristics 
of the NENL model. Since the tailward Y-point is lo- 
cated at mid-tail, there can be tailward convection in 
the mid-tail region, whereas the earthward Y-point in 
the near-Earth region can witness sudden current inten- 
sification in the last stages of the growth phase. The 
internal stresses in the near-Earth magnetotail due to 
the occurrence of this near-singular current sheet su- 
perposed on a dipolar field, drives the current sheet to 
nonequilibrium, a manifestation of which is the current 
disruption process envisioned by the CD model. 
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Fast magnetic reconnection and sudden enhancement of current sheets 
due to inward boundary flows* 
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Magnetic reconnection is widely believed to be involved in dynamical phenomena such as solar 
flares or magnetospheric substorms. The Sweet-Parker model of magnetic reconnection in a Y-type 
geometry predicts a characteristic time scale proportional to Sm (where S is the Lundquist number), 
which is too slow to account for the observed time scales. The Petschek model, in contrast, predicts 
a time scale proportional to In S in an X-point geometry. Numerical magnetohydrodynamic (MHD) 
simulations in the high-5 regime generally validate the Sweet-Parker model, unless the resistivity 
is enhanced in the diffusion region to large values (such that typically 5<103). It is demonstrated in 
this paper that nonlinear reconnection dynamics in a Harris sheet driven by inward boundary flows 
occurs on a nonlinear time scale that is proportional to S115 and thus has a weaker dependence on 
resistivity than the Sweet-Parker time scale. The current sheet amplitude at the separatrix (spanning 
Y points) grows algebraically in the linear regime but is suddenly enhanced after it makes a 
transition to the nonlinear regime. An analytical calculation is given for both the linear and the 
nonlinear regimes, and supported by two-dimensional resistive MHD simulations. The features of 
sudden current sheet enhancement and fast reconnection, controlled by boundary flows, are relevant 
to the phenomena of substorm onset or the impulsive phase of flares. © 1996 American Institute 
of Physics. [S 1070-664X(96)93505-0] 

I. INTRODUCTION 

Forced magnetic reconnection is often cited as a possible 
cause of dynamical space plasma phenomena such as solar 
flares, flux transfer events, or substorms. It provides a 
mechanism by which magnetic fields embedded in plasmas 
can undergo topological rearrangement due to perturbations 
imposed at the boundary, and thus liberate free energy that 
can be converted to thermal and kinetic energy. As to 
whether magnetic reconnection can account for the complex 
observational signatures of substorms or flares remains an 
open question, but it is clear that any theory of reconnection 
that proposes to account for the complexity of these phenom- 
ena must reproduce at least two significant observational fea- 
tures. The first feature is a time scale fast enough to account 
for the observed temporal signatures, and the second, more 
subtle, feature is the time development of the event, which 
jumps from a sluggish growth phase to a fast, impulsive 
phase. Steady-state reconnection models such as the classical 
ones due to Sweet-Parker1,2 and Petschek3 attempt to obtain 
the first feature, but since the dynamics is assumed to be 
steady state, these models are precluded from describing the 
second feature. An example of the second feature is the time 
history of growth of current sheets in the magnetotail during 
the growth phase of a substorm, prior to the onset of the 
expansion phase. Observations indicate two distinct phases 
in the growth of current sheets: a period of slow growth 
lasting approximately an hour, followed by a short period of 
sudden intensification lasting less than a minute.4'5 

Sweet and Parker1,2 showed that in a two-dimensional 
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(2-D) magnetic field, such as B=yß0 tanhx/a, with the field 
pointing in opposite directions on the two sides of a neutral 
line 2.t x=0, steady-state reconnection occurs on a character- 
istic time scale TSP=(TATR)

U2
, where TA=a/vA 

=a(4irp)1/2/50 is the Alfven time, and TR = 4ira2/r/c2 is 
the resistive diffusion time. (Here p is the mass density, TJ is 
the resistivity of the plasma, and c is the speed of light.) 
However, although TSP is much shorter than the diffusion 
time scale TR , it is still much too long to account for fast 
events such as flares. In order to resolve this difficulty, 
Petschek proposed another steady-state model with an 
X-point geometry.3 In contrast with the Sweet-Parker 
model, Petschek's model yields reconnection rates that are 
near-Alfvenic, with a weak logarithmic dependence on TJ. 

The dynamical readability of the Petschek model has 
been the subject of intense controversy and research over the 
last three decades. (See, for instance, the interesting review 
by Biskamp in his recent monograph.6) One point of 
view,6-10 supported by numerical simulations, is that the 
Petschek model does not include a proper treatment of the 
diffusion region for large values of the Lundquist number 
S(=Tä/TA), and unless this problem is overcome by a sub- 
stantial local enhancement of the resistivity near the X point, 
which reduces the length of the diffusion region, it is not 
possible to sustain a Petschek-like geometry.6'8,10 As a result, 
the dynamical evolution of a system, characterized by low 
values of y, leads inevitably to a geometry with current 
sheets between Y points, as proposed by Syrovatsky,11 with 
scaling properties characteristic of the Sweet-Parker model. 
Another point of view argues that fast reconnection rates of 
the type envisioned by Petschek are indeed realizable by a 
suitable design of boundary conditions. (See, for instance, 
the  review by Forbes  and Priest12 for a discussion of 
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Petschek's model and its variants.) This point of view is also 
supported by simulations.8,10'12,13"16 

Upon first glance, the two points of view discussed 
above may appear to be in conflict, but in point of fact, they 
are complementary once we realize that the key parameter 
that separates the two different types of numerical results is 
the value of 5, the Lundquist number. The published numeri- 
cal results supporting Petschek-like reconnection scenarios 
with X points tend to use Lundquist numbers of the order of 

whereas current sheets spanning Y 103 or less 8,10,12,13-16 

points in a Sweet-Parker geometry typically use Lundquist 
numbers at least as large as 104. The question as to which 
regime of 5 is physically relevant does not have a clear an- 
swer, but in the low-5 simulations, appeal is generally made 
to some form of micro- or small-scale fluid turbulence. If, on 
the other hand, we take the point of view that such large, 
orders-of-magnitude enhancement of the resistivity is an ad 
hoc assumption and implausible, then it appears that the clas- 
sical steady-state models of Sweet-Parker1,2 and Petschek3 

leave us with a quandary for high-5 plasmas, even with re- 
gard to the first observational feature mentioned above. 
Whereas the Sweet-Parker time scale is realized dynami- 
cally in some models of forced reconnection, it is too slow. 
On the other hand, the Petschek model, which yields a faster 
time scale, appears not to be realizable in the high-5 regime. 

In this paper, we give new analytical as well as numeri- 
cal results on a model of forced (or driven) reconnection with 
an inward boundary flow. This model is stimulated by the 
earlier work of Sato and Hayashi,13 who claim that a locally 
enhanced, current-dependent resistivity and plasma com- 
pressibility play crucial roles in their simulation.16 Our 
model differs significantly from their model, in that the 
plasma is assumed to be incompressible and in a high-5 
(2= 104) regime. Furthermore, the resistivity is assumed to be 
spatially uniform, with no ad hoc enhancement in the current 
sheet. 

Two new results are obtained and supported by asymp- 
totic analysis as well as simulation. First, we demonstrate 
that the reconnection in the nonlinear regime occurs on a fast 
time scale that depends weakly on the resistivity, in contrast 
with the stronger dependency in the Sweet-Parker model. 
Yet this model conforms essentially to the geometry envi- 
sioned by Sweet, Parker, and Syrovatsky, with current sheets 
spanning Y points, and not to the X-point geometry of 
Petschek. Second, we show that the current sheet amplitude 
(as well as the electric field produced by reconnection) ex- 
hibits a sudden transition from a sluggish growth phase to an 
impulsive phase. This latter feature has an important appli- 
cation to magnetosphere substorm signatures,4,5 but as best 
as we know, has not been reported in any previous analytical 
or numerical studies of forced reconnection in the high-5 
regime. 

Our initial conditions and main results are as follows. 
We assume that the initial magnetic field, which has the form 
B=yBox/a near x=0, is bounded by two boundaries, x = 
±a. At t=0, steady inward flows of the form V0(l+cos ky) 
are imposed at x=±a. (We choose the inward flows as 
steady, motivated by observations of the substorm growth 
phase driven by a solar wind electric field, which varies 

slowly with time.) We show that the subsequent dynamics in 
the high-5 regime occurs on a sequence of characteristic time 
scales. In the linear phase of the dynamics (Sec. I), charac- 
terized by the time scale rL=^/37i/3<§TSP, a current sheet 
forms at the separatrix with an amplitude growing algebra- 
ically as J0(t/TA) , where J0 is a constant independent of 77. 
This short-lived linear phase is followed by a nonlinear 
phase (Sec. II) in which the reconnection scales as (tlTN)m, 
where rN={TRT0rK)

v* is a new nonlinear time scale, with 
TA<To-a/V0<iTSp. Compared with the Sweet-Parker time 
scale TSP (which is proportional to TJ"

1
'

2
), the new nonlinear 

time scale rN has a weaker dependence on 77 (proportional to 
77     ). The growth of the current sheet amplitude exhibits a 
jump at the transition from the linear to the nonlinear regime. 
The current sheet amplitude grows as J0(t/TA)2 in the linear 
regime, and then as (rR/r0)

1/2J0(f/TA)3/2 in the nonlinear re- 
gime. The onset of the nonlinear regime of current sheet 
growth at t < TN is sharp, primarily due to the presence of the 
multiplicative factor (TR/T0)

112
, which can be very large in the 

high-5 regime. These analytical results are supported by our 
numerical simulations, discussed in Sec. III. 

II. THE LINEAR PHASE 

We consider the linear phase of the dynamics, derived 
from an initial-value calculation. We follow the methodology 
of Hahm and Kulsrud.17 The magnetic and velocity fields are 
represented as 

B(x,y,t) = ixVij/(x,y,t) (la) 

(lb) 

\x\^a,    (2) 

the flux and streamfunctions are given, respectively by 
^0=B0x 12a and <p0=0. Inward boundary flows of the form 
V0(l+cos ky), imposed at x=±a, perturb the equilibrium 
boundary. The time-dependent Lagrangian boundary condi- 
tion for a fluid element is 

and 

\{x,y,t) = zxVcß(x,y,t), 

respectively. For the initial equilibrium, 

B0 = yß0 la.nhx/a + B0z=yB0x/a + B0z, 

x=±[a-V0t{l+cosky)]. (3) 

We write ip(x,y,t) = ^/0(x)+ij/(x,y,t). In the linear phase, 
the perturbed flux function ljr(x,t) can be written as 

iff{x,y,t)= !jf0(x,t)+ ijfk(x,y,t)cos ky. 

The linearized resistive MHD equations then yield 

dip 

dt       x 

B0x 

a rR \dx 

for Faraday's equation, and 

^P^ \^2-k2U>=- — T: 

k2U, 

B0x  d 

(4) 

(5a) 

a    dy \dx k2  1/,,       (5b) 

for the vorticity equation. 
Since TK<TQ<TR for forced reconnection, the plasma 

obeys the ideal magnetostatic equations in the outer region, 
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whereas the effects of resistivity and inertia are important in 
the inner region. The outer region equations are 

dip        d^ 

dt      x dx 

and 

(6) 

(7) 

The solutions for the k=0 and k^O components of ij/ in the 
outer region are given by 

Mx,t)=<l>o(0,t) + B080 a   TA 
(8) 

and 

/ sinh|/cx| 

+ B080 

sinh|£x|   t 

sinh ka rA' 
(9) 

respectively, where S^VQTA . If the plasma is ideal, the to- 
pology of magnetic field lines cannot change, and ij/(0,t) 
remains zero for all times. Then, a tangential discontinuity 
(current sheet) occurs in the ideal solution, with a corre- 
sponding jump in ij/}1 The perturbed flow, 

_ a sinh|Ä:;c| 
:+y°l1 + I!inh^C0S^' (10) 

also exhibits a jump at x=0. 
In the presence of a small but finite resistivity, <j/(0,t) 

changes from its initial value, islands open up, and the cur- 
rent sheet is resolved. The dynamics of the inner region can 
be determined by solving the inner region equations near 
JC=0. In the linear phase, for t<rL, the Laplace transform of 
the £th-Fourier component, 

W«)- 
Jo 

dt e~s<Ut), 

can be calculated by a straightforward method discussed in 
Ref. 17 to obtain 

Z= 
d2h STLlpk(0) 

dB2     [l + {kad/sTL)2]' 

It can then be shown that17 

0=1 — 
■1/3 

djh 
dx 

* s TATR 
i//k(0). 

2    ka2 

On the other hand, the outer region solution (9) yields 

kB0 S0        kij/k(0) d>h 
dx 

x^O 

s■ rA sinh ka    tanh ka ' 

(11) 

(12) 

(13) 

Matching (12) and (13), and carrying out the inverse Laplace 
transform, we obtain 

<Ai(0,f) = 
B0S0(ka)2 I t 

3 77 sinh ka \ rL 
(14) 

Equation (11) predicts that the current sheet amplitude, 

7,(0,0 = 
ck2B0S0 

4TT
2
 sinhka \TJ ' (15) 

increases as (//TA)
2
. Note that in the linear regime, the cur- 

rent sheet amplitude is independent of the resistivity. The 
growth of this current sheet is faster than that in Taylor's 
model,17,18 in which the growth is proportional to f/rA, also 
independent of the resistivity. From Eqs. (14) and (15), in the 
limit £—>0, we obtain V>0(0,?)—>-0 and J0(0,r)-+0. 

We repeat for emphasis that the growth of the current 
sheet due to forced reconnection is algebraic in time, even in 
the linear regime. In this respect, forced reconnection is very 
different from a linear instability such as the kink-tearing 
mode,19 which grows exponentially in time in the linear re- 
gime. In linear forced reconnection, the current sheet ampli- 
tude grows algebraically in time out of the stable magneto- 
hydrodynamic (MHD) continuum. This distinction between 
free and forced reconnection is not considered in the linear 
theory of Horton and Tajima,20 who conclude that the recon- 
nected flux in forced reconnection grows exponentially in 
time, with a growth rate similar to that of the kink-tearing 
instability. 

III. THE NONLINEAR PHASE 

We now consider the nonlinear regime. It has been 
shown by Wang and Bhattacharjee18 that the nonlinear treat- 
ment of Taylor's model in Ref. 17 omits the current sheet 
that persists in the nonlinear regime.21'22 The omission oc- 
curs in Ref. 17 because it is assumed that the system passes 
from a linear non-constant-^ regime to a linear constant-^ 
regime, and thereafter, to a nonlinear Rutherford regime.23 

However, as demonstrated in Ref. 18, the linear constant-^ 
regime is superseded by the nonlinear Sweet-Parker regime 
because the island width becomes comparable to the recon- 
nection layer width while the system is still in the linear 
non-constant-(A regime. To see this, we estimate the width of 
the island in the non-constant- \p regime. Along the separa- 
trix, we have 

-tp{w) + 
B0w2 

2a ■"K0). (16) 

In the constant-^ regime, we have ij/{w)= ij/(0) and the is- 
land width is given by w = 2[aij/(0)/B0]m. However, in the 
non-constant-(/regime, we must use (8) and (9) to obtain the 
island width, 

1/2 

> = 8n\ 1 + 
ka t        latlf(O) 

• + 21 (17) 
sinh kaj TA ' ~\   B0 

It can be shown that the ratio of the island width w to the 
linear reconnection layer width AL is given by 

w / ka    \    t2 

-r~ka\ 1+   . ,   .        
aL        \       sinh kaj T0TA 

+ [3TT
3
 sinh(ka)]-m(ka)2 (18) 
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where %=(T0TR7A)
1/5

, and, as in Ref. 18, we have replaced 
AL by an upper bound, the current channel width 
~(2ir/k)(7A/t). Then, the transition from the linear non- 
constant-^ regime to the nonlinear non-constant-(A regime 
occurs when TA

aiQ2<t< TN<TL . 
We now use a variant of the Sweet-Parker analysis for 

the nonlinear regime.1'2,7,18,21'22 Near the separatrix, using the 
induction equation, we obtain 

dif/(0,t)     a2(ABv) _ 2a2By 

dt T
R&N        rRAN 

2a 

TR&N 
B0S0\ 1 + 

k a 

sinh ka 
(19) 

where AN denotes the nonlinear reconnection layer width. On 
the other hand, from the inner limit of the outer (ideal) re- 
gion solution, we obtain 

FIG. 1. The current density J.(Q,T) as a function of (dimensionless) time 
T<sr/TA) in (a) case (i) with S=105, and (b) case (ii) with 5 = 10". The 
dash-dotted line is the linear analytical solution and the dashed line is the 
nonlinear one. 

dtl/(0,t) 

dt 
■ = vrBv (20) 

Using the conservation laws of mass and energy for an in- 
compressible fluid (see, for instance, Refs. 18 and 22), we 
obtain 

vA{By/B0)AN=vxl, (21) 

where / is the length of the current sheet. From Eqs. (19)- 
(21), we obtain 

AN=(2B0TAI/B yTRa)ula (22) 

The nonlinear reconnected flux can now be determined 
by substituting AN in (17) and integrating with respect to 
time. We obtain 

2V1 
iK0,t)=—\ 1 

ka 

sinh ka 

3/2/ 1/2 

B0S0 

5/2 

(23) 

As claimed earlier, the characteristic reconnection time scale 
is given by TN=(TRT0TA)

V5
. (See the Appendix for a more 

detailed discussion on characteristic time scales.) In the 
physically interesting regime TQ<^TSP, TN is a fast time scale, 
with a weak dependence on resistivity. For example, if we 
assume that T0~10

2
TA, Tä~10

8
TA, we obtain TN~T0 

The electric field near the neutral sheet is given by 
■<o-ioV 

E(0,f) = 
1 dip(0,t) 

c      dt 

= Vl\ 1 + 
sinh ka 

(24) 

~/ and ka~\; 
V£'V/5, which implies 

To determine a rough scaling, if we take a 
then for t~rN, we obtain £(0) 
that the reconnection electric field is determined predomi- 
nantly by the driving flow (or the driving electric field) at the 
boundary, and only weakly by the resistivity, as found in the 
simulations of Sato and co-workers.13,16 

The current density at the separatrix is given by 

J(0,t) = 
Vic 

ATTO
1 

1 + 
ka 

sinh ka 

3/2 

B0SC 

OTR 

IT0 

mi 3/2 

(25) 

IV. NUMERICAL RESULTS AND DISCUSSIONS 

We have tested the analytical results discussed above 
with a two-dimensional (2-D), incompressible MHD code. 
Details of the numerical method are discussed in Ref. 2. We 
impose inward flows at x= ±a, and open boundary condi- 
tions at y= ±2a. We have run simulations with the follow- 
ing two sets of parameters: 

(i)   T0=100TA,    S=105,  which yield 7V*25TA 

and  TL »» 46rA; 

(ii)   T0=100TA,    5'=104,  which yield TW~16TA 

and TL**21TA. 

Figures 1(a) and 1(b) show the time evolution of the 
current sheet amplitude at x = 0 for the sets (i) and (ii), re- 
spectively. In the linear regime, which holds in the interval 
0<f< TN<TL, Eq. (15) predicts that the current sheet ampli- 
tude grows as J^O^^JQT

2
, where J0 = ck2B0ö0I 

(47T sinh ka) and r^tlrK. In the nonlinear regime, realized 
for t>rN, we obtain 

A(0,r) = 
Y2~ir sinh ka 

{kaY 
1 + 

ka    \y2lar^m 

sinh ka)    \ IT0 

(26) 

For the computer runs reported here, we have taken ka = 7r/2 
(for which the linear stability parameter A'24 is negative). 
Then, Eq. (26) yields 

7,(0,T) = 9|y 
a\mlrR^m 

T-o 
/or3'2 (27) 
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FIG. 2. Contour plot of (a) the flux function ip and (b) the current density /. 
at r=20 in case (i) with 5 = 105. 

In Eq. (27), the length of the current sheet I is determined by 
the wavelength of the boundary perturbation, as given by the 
inequality \lk<l<irlk. For the present set of computer runs, 
we have the inequality 

6<9(a//)1/2<ll. (28) 

In Figs. 1(a) and 1(b), we show that the simulation re- 
sults (solid line) are reproduced well by the curve 

J(r) = 

Jz0 + Jo 

JzO 

T<tr 

Jntn+a O'O 

1/2 

Jo(r- ■t0)
m T>fn 

(29) 

where Jz0 is the initial equilibrium current density at x=0. 
The dash-dotted line is the linear solution, while the dashed 
line is the nonlinear solution. The factor a is 7.2 for case (i) 
and 8.8 for case (ii). Both of these values do lie within the 
range of the inequality (28). The onset of the regime of en- 
hanced growth seen to be approximately f0«=16 for case (i) 
and t^\2.5 for case (ii), which should be compared with the 
analytical predictions of r0<25 for case 0) and r0<16 for 
case (ii). The theoretical predictions are reasonably accurate, 
particularly for the higher-S simulation. 

Figures 2(a) and 2(b) are pictures at r=20 of the current 
density and the flux surface for case (i). Note the presence of 
an intense current sheet near the separatrix spanning the Y 
points. The geometry is similar to that envisioned by Sweet, 
Parker, and Syrovatsky, but very different from that of 
Petschek. For low values of S(< 103), the Y-point structure is 
not realized, and the geometry appears more Petschek-like.9 

We note that the flux piles up at the inflow region of the 
current sheet, enhancing the growth of the current sheet. 

Two new features in the results discussed above become 
evident when we compare with earlier analytical and numeri- 

"7  1 9 *7 1  00 
cal results on forced reconnection. ' ■ ~ In earlier work, 
the characteristic nonlinear reconnection time scale is TSP, 

which is much longer and has a stronger dependence on re- 
sistivity than the characteristic scale TN. The second new 
feature is the sudden transition in the current sheet amplitude 

from a slow growth phase to an impulsive phase, seen in Fig. 
1(a). (Our results should also be distinguished from some 
recent results on fast reconnection obtained in Refs. 25-27, 
which begin from a highly stressed initial state containing an 
X point.) 

These analytical and numerical results yield a possible 
answer to the question broached by us at the beginning of the 
paper: forced reconnection, if it is caused by an inward 
boundary flow, can indeed yield reconnection rates with a 
much weaker dependency on the plasma resistivity than the 
classical Sweet-Parker model. The reconnection electric 
field is determined predominantly by the magnitude of the 
driving electric field or the flow at the boundary. Further- 
more, in the high-5 regime, the growth of the current sheet 
amplitude exhibits a jump from the linear to the nonlinear 
regime. Though these are attributes of fast reconnection, they 
occur within the context of a Sweet-Parker geometry in a 
high-Lundquist-number regime, and not a Petschek geom- 
etry. These results have significant implications for phenom- 
ena that involve continuously driven reconnection such as 
solar coronal fields driven by foot-point convection or the 
Earth's magnetosphere driven by the solar wind. In particu- 
lar, we have recently considered5 the development of current 
sheets in the magnetotail during the growth phase of a sub- 
storm. Multisatellite observations indicate two distinct time 
scales: a sluggish phase that lasts an hour or so, followed by 
a period of sudden enhancement that lasts approximately one 
minute (see Fig. 13 of Ref. 4). This feature has been simu- 
lated by us,5 using inward flows due to the solar wind in a 
magnetospheric equilibrium including the Earth's dipole 
field, where after the formation of a Y-type current sheet, 
reconnection forced by the solar wind leads to a sudden en- 
hancement in the current sheet amplitude. For details the 
reader is referred to Ref. 5. 
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APPENDIX: CHARACTERISTIC TIME SCALES IN 
NONLINEAR RECONNECTION 

The reconnection rate is defined as ip=dijj/dt.6 During 
nonsteady reconnection dynamics, this rate is, in general, a 
function of time. This can cause some confusion in defining 
a characteristic time scale in nonlinear reconnection models. 
A correct procedure for defining a characteristic reconnection 
time (in resistive MHD) is as follows: consider the explicitly 
time-dependent solution for the flux or the island width and 
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normalize the physical time by a time scale that makes the 
solution manifestly independent of 77. That time scale defines 
the characteristic reconnection time. 

We illustrate this definition by reviewing some well- 
known cases. In the Rutherford regime,23 the island equation 
obeys the relation 

W~T/t, (Al) 

from which it follows that the characteristic time scale tR 

scales as rfl. We then also have 

dw 
v\ (A2) 

from which we conclude, after scaling time, that the recon- 
nection rate if/ scales as 77. 

Another   well-known   case   is   nonlinear   m = \   kink 
tearing.21,22 From the island equation 

V, (A3) 

we obtain the characteristic time scale TSP~rfm. It also 
follows that 

dip 

~dt" 

dw 

It" •77 V- Ml (A4) 

which, after time has been scaled, shows that the reconnec- 
tion rate scales as ?71/2. 

We now consider the model developed in this paper and 
show that by Eq. (23), the characteristic reconnection time 
scale is TN . If we write 

dip 

It" yv2, (A5) 

,1/2 and conclude hastily that the reconnection rate scales as 77 
it will be wrong, because in Eq. (A5), time has not been 
scaled correctly. After t is normalized by TN , it follows that 
the reconnection rate scales as 

dip 

It" •77
1/V/2~771/5, (A6) 

as claimed in this paper. In general, if ip~(7)at)n, then the 
characteristic    reconnection    time    scale    t~rfa,    and 
j,= dj,/dt~7}a(V

aty-1~7!
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Fast impulsive reconnection and current sheet 
intensification due to electron pressure gradients in 
semi-collisional plasmas 

Z. W. Ma and A. Bhattacharjee 
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Abstract. A numerical simulation of forced reconnec- 
tion and current sheet growth due to inward boundary 
flows in semi-collisional plasmas is presented, and con- 
trasted with the results of an incompressible resistive 
MHD simulation in the high-Lundquist-number regime. 
Due to the presence of electron pressure (or Hall cur- 
rents) in the generalized Ohm's law, the reconnection 
dynamics makes an impulsive transition from a slow 
linear regime to a nonlinear regime characterized by 
fast reconnection and current sheet intensification at 
a near-Alfvenic rate. The current sheet spanning Y- 
points in the early nonlinear regime shrinks and ap- 
proaches an X-point geometry. The spatial scale of the 
collisionless parallel electric field is the ion skin depth, 
and decoupled from the spatial scale of the parallel cur- 
rent which is much narrower and determined by the 
Lundquist number. 

The search for fast reconnection models has been a 
dominant activity in theoretical magnetospheric and so- 
lar physics research for more than three decades. Since 
the early sixties, two models of steady-state reconnec- 
tion, both based on resistive MHD, have provided fo- 
cal points for the discussion of reconnection dynamics. 
In the Sweet-Parker model (see, for instance, Parker 
[1979]), a two-dimensional (2D) magnetic field, such 
as B = x60tanhy/a with a neutral line at y = 0, 
undergoes steady-state reconnection on a characteris- 
tic time scale TSP = (TATR)

1/2
, where rA = a/vA = 

a(47rp)1/2/60 is the Alfven time, and rR ~ 4ira2/r]c2 is 
the resistive diffusion time. (Here p is the mass density, 
r\ is the resistivity of the plasma, and c is the speed 
of light.) In contrast with the Sweet-Parker model, 
Petschek's model [Petschek, 1964] yields reconnection 
rates that are near-Alfvenic, with a weak logarithmic 
dependence on 77. 

Solar flares or magnetotail substorms, phenomena to 
which reconnection models are often applied, exhibit 
considerable temporal variability and a multiplicity of 
time scales. For instance, Ohtani et al. [1992] report 
from multi-satellite observations that after a period of 
sluggish growth (~ 0.5-1.5hr), a near-explosive intensi- 
fication of the thin cross-tail current sheet occurs during 

Copyright 1996 by the American Geophysical Union. 

Paper number 96GL01600 
0094-8534/96/96GL-01600S05.00 

a short interval (< 1 min) just before the onset of the 
substorm expansion phase. It is also well known that 
hard X rays emitted during an eruptive flare, which are 
a reliable signature of prompt electrons, exhibit a sud- 
den transition from a slow growth phase to an impulsive 
phase. (See, for instance, Tandberg-Hanssen and Em- 
slie [1988] and other references therein.) It is clear that 
any theory of reconnection which proposes to account 
for the complexity of these phenomena must account 
for this subtle time-development that includes a sud- 
den transition from a sluggish growth phase to a fast 
impulsive phase. 

Another challenge for theory that has fundamental 
implications is the inadequacy of the resistive MHD 
model in the high-S regime when thin current sheets 
develop. As these thin current sheets become more lo- 
calized and intense, and the reconnection layer-width 
A falls in the "collisionless" range de = c/wpe < A < 
di = c/wpi (where upe and wpi are the electron and ion 
plasma frequencies, respectively), it is not valid to ne- 
glect the effect of "collisionless" terms in the generalized 
Ohm's law 

E+- 
x B 

■ vJ+ 
4TT DJ    Vp    J x B 

"je  Dt 
— + +%V2J, (1) 

nee 

where E is the electric field, B is the magnetic field, 
v is the plasma flow velocity, p is the electron pres- 
sure (assumed to be a scalar), n is the electron den- 
sity, e is the magnitude of the electron charge, and 
D/dt = d/dt + v • V is the total convective deriva- 
tive. The proportionality constant r)h on the right of 
(1) is commonly referred to as "hyperresistivity" [Bhat- 
tacharjee and Hameiri, 1986]. 

In this Letter, we report the results of a numerical 
simulation of forced (or driven) reconnection with an in- 
ward boundary flow, governed by the generalized Ohm's 
law (1) in a compressible plasma. We contrast our re- 
sults with those obtained by a resistive MHD simula- 
tion (i.e., one in which all terms except the first term 
on the right of equation (1) are neglected). Two distinc- 
tive features emerge in our semi-collisional simulation. 
First, the maximum thin current sheet amplitude, af- 
ter a period of slow growth, exhibits a drastic impulsive 
enhancement at near-Alfvenic growth rates which is in- 
sensitive to the value of S. Second, the geometry of the 
reconnection region changes profoundly as the Y-points 
of the current sheet shrink rapidly to form a structure 
that approaches an X-point. Consequently, there is a 
rapid enhancement in the reconnection rate. 
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The rapid acceleration of nonlinear reconnection due 
to electron pressure gradients was first recognized by 
Aydemir [1992] in the context of kink-tearing instabil- 
ities, widely believed to be involved in the so-called 
«sawtooth collapse" phenomenon in toroidal plasmas. 
Wang and Bhattacharjee [1995] developed an analyti- 
cal model for this phenomenon, in good accord with 

Aydemir's simulation results. 
We represent the magnetic field as B = i x VV>(z, y, t) 

+5zz, where 4>(x,y,t) is a flux function The initial 
magnetic field is given by Bx = 60tanh(y/a), By - U, 
B2=Bo= constant. The compressible MHD equations 

are 

dt 
(H 

d{pv) 
dt 

-V •   /)vv + [p + 
B: 

■)I- BB 

| = _V.(pv) ■ (7 - l)pV • v 

(2) 

(3) 

(4) 

Here I is the unit tensor, 7(= 5/3) is the ratio of the 
specific heats of the plasma, and the variables x, v, 
t B op and t/. are nondimensionalized as follows: 

B/6o' -> B, x/a - x, r/rA - t, i> - V/M, « - «/"A- 
' p/po, p -+ p/(6g/47r), where p0 is a constant. 

To complete equations (2)-(4), we need equations for 
Mx,y,t) and Bz(x,y,t). These equations can be ob- 
tained by combining Faraday's induction equation with 
the generalized Ohm's law (1) from which we omit the 
electron inertia term. The equation for Bz{x,y,t) is 

dBz 

dt 
-  _V-(B2v) +B • Vvz + 

a check on the consistency of our code that either of 
these equations, when combined with equations (2)-(5) 
yield nearly identical numerical results for the same ini- 
tial conditions. It should be noted, however, that the 
"finite-ion-Larmor-radius" terms manifest themselves 
differently in 6(a) and 6(b). In 6(a), they show up as 
the Hall term, whereas in 6(b) they show up as the elec- 
tron pressure term. From (5) and (6b), it is also clear 
that the time-dependence of B,, which is neglected in 
2D incompressible reconnection dynamics, plays a sig- 
nificant role when collisionless terms are retained in the 

generalized Ohm's law. 
We choose the plasma pressure to satisfy the magne- 

tostatic equilibrium condition, and normalize the pres- 
sure so that the plasma beta is equal to one on the 
boundary y = ±1. We assume that an electric field, 
given by E = E0(l + cosnx/2), is imposed_at the up- 
per and lower boundaries y = ±1, with E0 = 0.01. 
This electric field generates an inward boundary flow 
Vy(= vQ{l + ooskx/2), where v0 is a constant) at the 
upper and lower boundaries of the simulation domain. 
We use free-boundary conditions at x = ±2 for all de- 
pendent variables except for the flux function V which 

obeys dip/dt = 0. 
For the initial and boundary conditions discussed 

above, the dynamical equations preserve the symmetry 
relation f(x,y) = ±f(-x,-y) for all times, enabling 
us to carry out the simulation in half of the physical 
domain with high spatial resolution. In order to reduce 
numerical truncation errors and resolve the fine spa- 
tial structures, we have developed a Runge-Kutta finite 
differencing scheme with fourth-order accuracy in both 

space and time. 

S 

x V2fl, - 1 Vx 
'J x B-Vp^ )L'<5> 

Flux Function 

If we combine Faraday's equation with the /-component 

of (1), we obtain 

dt S 
+ ^(J 

P 
x B)2 -Vh^2Jz ■ (6a) 

Equivalent^, if we combine Faraday's equation with the 
component of (1) parallel to B, we obtain 

d± 
dt 

IB   J dj  . 

"PFZ 

■Vp-fW, (6b) 

where Bz # 0. In writing equations (2)-(6), we have as- 
sumed that the ion pressure gradient can be neglected. 
This assumption can be remedied, and we do not expect 
it will change our results qualitatively. A more serious 
assumption is that the electron pressure is taken to be a 
scalar which is violated in many astrophysical plasmas 
but is a common assumption in the Earth's magnetotail 
and the solar corona. The inclusion of tensor pressure 
effects in fluid models is complicated by the lack of rig- 
orous closure relations for the off-diagonal elements of 

the pressure tensor. 
In our simulations, we use either equation 6(a) or 

6(b), because they are not independent.   Indeed, it is 

Figure 1. Resistive MHD simulation. Contours of (a) 

V-, (b) Jz, and (c) vx at t = 20 for S = 105. 
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Growth Rate 

Figure 2 Resistive MHD simulation (with the pa- 
rameters for Fig 1). (a) Growth rate of the magnet 
flux functlon (= dlnip/dt) at the st n        «netic 

of time maX™Um CUrrent sheet amplitude as functions 

Resistive MHD Simulation 

tiv^Mnn  PreSfnt rCSUltS f°r an inc°mpressible resis- 
ive MHD amu ation m which all but the first term on 

*/erÄ°i(    ^ beSn SGt eqUal to zero-   Wan9 ei ai [996] showed analytically that in this case the peak 
amplitude of the current sheet (spanning Y-points) ex- 
hibits a sudden transition from a sluggish linear growth 
phase to a rapid nonlinear phase in a characteristic time 
scae rN = (7*7^)1/*, where r0 = a/v0 is the time 
scale of the imposed boundary flow.   Figure 1 shows 
contours of (a) * (b) j„ and (c) v, af /J *™ 
^ - 1Ü .   The geometry of this reconnection process 
conforms to that of Sweet-Parker and Syrovatsky [19711 
As shown by   Wang et al.   [1996], the dependence of 
the reconnection time scale on rj is weakened (to n~i/6 
from ,-i/2 in the Sweet-Parker model) due to the flux 
pileup at the neutral line caused by the inward bound- 
ary flows.    Figures 2(a) and 2(b) show, respectively, 
the time-dependence of the growth rate of the mag- 

Tx - n     - n?10nhd^,dt) at the staSnation Point 
VT   ixr ~   '' maximum current sheet ampli- 
tude   We note the strong enhancement in the current 
sheet amplitude  predicted by analysis, as the system 
passes from the linear to the nonlinear regime    This 
growth eventually slows down in the nonlinear regime. 

Semi-collisional MHD Simulation 

With the same initial and boundary conditions we 
Sles; Emulation results from the full equations 
JyI iu A. , electron-Pressure term comes into play 
when the thickness of the current sheet becomes smaller 
than the ion skin depth. Prior to this time, the mag- 
netic reconnection is controlled by the resistivity and 
the boundary flow. 
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Figure 3 shows contours of (a) ^, (M J,   (c) coI]: 
«onl« S||(s V,p/ne), and (d) ^'respectiiy ftfa 
run with * = 0.1   S =10«   and ,h = 5 x 10-io at 

- 20.  Figures 4(a) and 4(b) show, respectively the 

-Tin'/ T.frZfthe Sr0Wth "^ °f the ™^ A« (- dlnt/dt) at the stagnation point and the maximum 
current sheet amplitude.  In the linear phase, the™ 
rent density grows algebraically in time and the growth 
rate is low, as also seen in the resistive MHD simulation 
Driven by inward flows, as the current sheet becomes 

ZlTilnTthe 7 skin,depth'the pressure Srad-n or the Hall term) affects the nonlinear dynamics signif- 
icantly. Indeed, m the nonlinear stage, the reconnection 
dynamics is dominated by these collisionless effects If 
we compare Figures 2 and 4, we note an impulsive'in- 
tensification over a few Alfven times in the growth rate 
of the magnetic flux as well as the current sheet m Fig- 
ure 4 (at t > 10), the rate and magnitude of which is 
significantly larger than that in Figure 2 

Flux Function 

^0.0 

><0.0 

-0.3 

0.3 

><0.0 

(a) 

(b) 

CcJlisioplessPaiaUel Electric WP.IH 

1*0.0 

offe3VhW "C??i0^-M?D simul^ion. Contours 

(Q) v   at t     20. The initial condition is the same as in 
Fig. 1, with di = 0.1, S = 105, and Vh = 5 x lO"10. 
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The initial geometry used in this simulation is simple, 
and we do not claim direct applicability to substorms or 
eruptive flares. As in our recent simulations, we should 
include the effects of the Earth's dipole field [Ma et 
al 1995a] or the geometry of the 2D coronal loop [Ma 
et 'al 1995b] before we attempt to make connections 
with'substorm or coronal phenomenology. Nonetheless, 
the results presented in this paper are significant be- 
cause they contain some fundamental features of fast 
collisionless reconnection that may play a qualitatively 
important role in the elucidation of such phenomena. 
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Fieure 4 Semi-collisonal MHD simulation (with the 
^meter's Sig. 3). (a) Growth rate of the magnetic 
flux Snction (= dlni/d* at the stagnation point and 
(b)tt maximum current sheet amplitude as functions 

of time. 

The growth rate of the magnetic flux and the maxi, 
mum current sheet amplitude is found to be-essentiaUy 
independent of S (in the range 5 x 10  - 2 x 10   .We 
expect that the impulsive growth rate is essentially_m- 
dependent of S when S is high, but due to the   imi 
tations of computational resources and spatial resolu- 
tion, we are unable to provide a conclusive S-scalmg 
valid over a large range of S. In Figure 4(b), we note a 
transition from impulsive growth to a slower, algebraic 
growth at t ~ 16. This slowing down is primarily due 
to the effect of hyperresistivity which intervenes when 
he cur !n   sheet^ecomes very localized. If hyperresis- 

tivity is eliminated from the simulation, the impulsive 

phase persists for longer times nrntmmi\ 
Electron pressure gradients bring about a profound 

change in the  geometry  of the reconnection region. 
Compar'on of Figure» 1(b) and 3(b) show that the 
length of the 7-type current sheet seen m the resis- 
twe case is dramatically reduced in the semi-co lisional 
case   The maximum reconnection rate is not only much 
aster in the semi-collisional case, but alsc-shows a much 

stronger time-dependence, as it varies from algebraic 
growth in time to exponential or even near-explosive 
growth under some conditions [Wang and Bhattacha^ 
L   1995],    Secondly, we emphasize the spatial-scale 
eparation of the collisionless E» and J„ m Figure 3. 

Whereas the scale of En is of the order of d,^in- 
dependent of the resistivity, the scale of Jj,  is much 
narrower and controlled by the resistivity.  The region 
with the strongest £„ is located in the vicinity of the 
stagnation point , but it is exactly zero at the stagna- 
tion point . Though the electron pressure term in the 
generalized Ohm's law does not break field lines  it de- 
cuples electron and ion dynamics and prepares the way 
for the qualitative changes observed m the reconnection 

dynamics. 
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A three-dimensional reconnection model of the 
magnetosphere: Geometry and kinematics 

Xiaogang Wang and A. Bhattacharjee 

Department of Physics and Astronomy, University of Iowa, Iowa City 

Abstract. A fully three-dimensional magnetic reconnection model is proposed for 
the merging between a spatially nonuniform interplanetary magnetic field and the 
geomagnetic field.  The model generalizes the canonical model of Cowley (1973) 
and Stern (1973), replacing the two magnetic nulls of the canonical model by a 
web of A and B nulls and their associated null lines.  It is shown that the new 
A-B model helps resolve some of the difficulties of the canonical model and allows 
a qualitatively consistent description of magnetic reconnection that begins on the 
dayside and subsequently evolves to the nightside.   A kinematic study based on 
the induction equation demonstrates that in an ideal plasma, the velocity of the 
magnetic field has power-law singularities at the separatrices which are the sites of 
reconnection. Qualitative implications of this global model for ionospheric potential 
patterns and substorm signatures are discussed. 

1. Introduction 

The coupling of the solar wind and the interplan- 
etary magnetic field (IMF) to the magnetosphere is 
one of the most widely studied phenomena in magne- 
tospheric physics. Not only does the solar wind trans- 
fer mass, energy, and magnetic flux into the geomag- 
netic plasma, but a sudden change in the direction of 
the IMF can cause a major rearrangement of the topol- 
ogy of the magnetosphere, thus causing a substorm "in 
which a significant amount of energy derived from the 
solar wind-magnetosphere interaction is deposited in 
the auroral ionosphere and magnetosphere" [McPher- 
ron, 1991, p. 600]. 

Magnetic reconnection is widely believed to play an 
important role in the phenomena mentioned above. 
There are many reasons for this belief. Magnetic re- 
connection can change magnetic topology much faster 
than diffusion and can transfer mass-, energy, and flux 
between topologically distinct regions. It can also un- 
leash a potentially large source of magnetic free energy, 
support large induced electric fields that can develop 
quickly (if circumstances are favorable), and accelerate 
particles to high energies. 

There are two questions that are pertinent to magnet- 
ic reconnection: where does it occur and how rapidly? 
The first is a question about geometry and the second 
about dynamics. Attempts to answer the second ques- 
tion without knowing the answer to the first can lead 
to pitfalls. Elsewhere, we have discussed how considera- 
tions of geometry as well as dynamics help resolve some 
of the controversies pertaining to the physics of colli- 
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sionless tearing instabilities in the magnetotail [Wang 
and Bhattacharjee, 1993; Bhattacharjee et al, 1994; 
Harrold et al, 1995]. 

Geometry involves global considerations and leads to 
the concept that magnetic reconnection (if it is to be 
distinguished from simple diffusion) occurs in the vicin- 
ity of separatrices. For example, an X point or a neu- 
tral line in two dimensions or magnetic nulls in three 
dimensions are sources of separatrices and hence are 
possible sites of reconnection [Greene, 1988; Lav, and 
Finn, 1990]. If we know where the separatrices are and 
how they evolve in time, we know essentially where re- 
connection occurs as the magnetosphere evolves in time. 

There is another point of view which claims that 
reconnection can occur wherever a parallel electrical 
field component develops and breaks the ideal magne- 
tohydrodynamic (MHD) constraint. According to this 
point of view, which leads to the concept of "general 
magnetic reconnection," separatrices are not required 
[Schindler et al, 1988]. However, in this paper, we 
limit our discussion to separatrix-based reconnection 
since the major IMF-magnetosphere coupling models 
in the literature, i.e., Dungey's two-dimensional model 
[Dungey, 1961, 1963] or its three-dimensional (axisym- 
metric) generalization [Cowley, 1973; Stern, 1973], in- 
volve separatrices. 

The main goal of this paper is to develop a general 
geometrical framework for reconnection in the magne- 
tosphere that integrates the dayside with the nightside 
and to examine what this framework implies qualita- 
tively for ionospheric potential patterns and some local 
signatures of substorm development, especially during 
a sudden southward turning of the IMF. The coupling 
between the IMF and the magnetosphere was first stud- 
ied in two-dimensional (2D) geometry by Dungey [1961, 
1963]. In particular, Dungey considered the special case 
in which the IMF is exactly parallel or antiparallel to 
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A-type null 

(a) 

B-type null 

(b) 

Figure 1. (a) An isolated magnetic null of type A. The EA surface is a stable manifold and the 
JA me 1S an unstable manifold, (b) An isolated magnetic null of type B. The EB surface is an 
unstable manifold, and the jB line is a stable manifold 

the Earth's magnetic dipole. Cowley [1973] and Stern 
[1973] treated the more general case of the coupling of 
the Earth's field with an IMF of arbitrary orientation, 
assuming that the Earth's magnetosphere is axisymmet- 
ric and the IMF is uniform. Following Siscoe [1988], we 
shall refer to this model as the canonical model. One 
of the strengths of the canonical model is that it al- 
lows us to consider the geometry of reconnection for a 
continuum of directions of the IMF, including the cases 
of exactly northward and southward IMF. However, 
as discussed by Siscoe [1988], the canonical model has 
a number of difficulties, both theoretical and observa- 
tional. The present paper attempts to resolve some of 
these difficulties, and in the process of doing so, we are 
naturally led to certain qualitative geometrical consid- 
erations regarding substorm development. 

The following is a plan of the paper. In section 2, 
we review the canonical model, as it provides a point 
of departure for further generalizations. In section 3, 
we present the A-B web model and discuss how it ad- 
dresses some of the theoretical and observational issues 
raised by the canonical model. We then discuss the 
kinematics of magnetostatic reconnection in the con- 
text of the A-B web model. Section 4 represents an 
attempt to identify what might be some of the local 
signatures for substorms, as the IMF orientation sud- 
denly turns southward from northward. We conclude 
in section 5 with a discussion of the implications of the 
new reconnection model and unanswered questions that 
need further work. 

2. The Canonical Model 

The canonical model [Cowley, 1973; Stern, 1973] of 
magnetic reconnection in the Earth's magnetosphere is 
embedded in three dimensions and describes magnetic 
reconnection between the Earth's axisymmetric dipole 
field and a constant IMF of arbitrary orientation. There 
are some useful pictures of this process in the paper by 
Lau and Finn [1990] that we reproduce here (in order 
to keep this paper self-contained). 

Magnetic nulls, where the magnetic field vanishes 
identically, play a crucial role in 3D reconnection phe- 

nomena because nulls are the source of Separatrices. In 
what follows, we use the nomenclature of Cowley [1973] 
(and, more recently, of Greene [1988] and Lau and Finn 
[1990]) in classifying magnetic nulls. Near a null, the 
Taylor expansion of B gives 

B(x) = VB•x , (1) 

where VB is a 3 x 3 real matrix of zero trace (because 
B is a divergenceless field). If VB is a symmetric ma- 
trix (i.e., if the current density J vanishes at the null), 
the eigenvalues are real, and the nulls can be either 
of type A or B. For a type A (B) null, one (two) of 
the eigenvalues is (are) positive while two are (one is) 
negative. Figure la shows a null of type A. Near the 
null, the eigenvectors for the negative eigenvalues lie on 
a two-dimensional plane coinciding with the so-called 
ZA surface which is a stable manifold, whereas the jA 

line that coincides with the eigenvector for the positive 
eigenvalue is an unstable manifold. If we reverse the 
arrows in Figure la, we obtain a picture of a null of 
type B, shown in Figure lb. 

Let 9 be the angle between the Earth's magnetic 
dipole and the IMF, with 9 = n corresponding to a 
northward IMF.   If the IMF is exactly northward, we 
obtain the configuration in Figure 2a, with an A-type 
null above the north pole and a B-type null below the 
south pole.  On the other hand, coupling to an exactly 
southward IMF (9 = 0) yields an X chain (or a ring of 
X points) circling from the dayside to the nightside all 
around the Earth. The projection of this configuration 
on a meridianal plane yields the picture in Figure 2b, 
originally envisioned by Dungey [1961]. For the case of 
the northward IMF, the separator that connects the A 
and B nulls clearly separates the closed geomagnetic 
lines from the open IMF lines.    Forced reconnection 
(driven by the solar wind) for northward IMF, which 
we refer to hereafter as reconnection of type N, occurs 
between the IMF and the closed field lines on the night- 
side. For the case of the southward IMF, the separator 
separates the closed geomagnetic field lines from the 
open IMF lines, but there is a new class of open field 
lines which have a footpoint in the polar caps. Forced 
reconnection (driven by the solar wind) for southward 
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(«) (b) 

Figure 2. The magnetic geometry when (a) a constant and exactly northward interplanetary 
magnetic field (IMF) is superposed on an axisymmetric dipole field and (b) a constant and exactly 
southward IMF is superposed on an axisymmetric dipole field (courtesy of Lau and Finn [1990]). 

IMF, which we refer to hereafter as reconnection of 
type S, occurs at first between the IMF and the closed 
field lines on the dayside, then between the half-open 
field lines (each with a footpoint on the pole) and the 
closed field lines on the nightside. 

From the discussion above, it can be anticipated that 
as the IMF turns from northward to southward, the 
two nulls, initially near the two poles, will move equa- 
torward, depending on the angle between the geomag- 
netic axis and the direction of the IMF. Cowley [1973] 
and Stern [1973] considered the general case of arbitrary 
IMF orientation. Figures 3a and 3b correspond to the 
cases 9 < n/2 and 9 > ir/2, respectively. The T,A and 
Eß surfaces that are coincident in Figure 2a become 
distinct in Figures 3a and 3b. The A-B line, which is 
referred to as the "single separator" in the canonical 
model, is the site of magnetic reconnection for an IMF 
of general orientation, which we refer to, hereafter, as 
reconnection of type G. 

A common feature of all the realizations of the canon- 
ical model is the presence of two nulls, one of type A, 
the other of type B. As discussed by Siscoe in his re- 
view [Siscoe, 1988, and references therein], the canoni- 
cal model presents us with a number of theoretical and 
observational difficulties. 

2.1.   A Geometric Discontinuity 

The first difficulty is that there is a geometric discon- 
tinuity in the canonical model. We have noted above 
that as 9 changes from ir to zero (IMF changes from 
northward to southward), the two nulls move equator- 
ward. This process continues till 9 reaches a near-zero 
value. Just at 9 = 0, however, these two nulls change to 
a denumerably infinite number of X points (or a ring of 
X points) all around the Earth. This sudden and dis- 
continuous change in the geometry is an artifact of the 
assumption of axisymmetry of the Earth's dipole field. 

(a) (b) 

Figure 3. The three-dimensional magnetic geometry when the IMF is oriented (a) at 9 < n/2 
and (b) at 9 > ir/2 (courtesy of Lau and Finn [1990]). 
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18*- 

INTERSECTION OF XB SURFACE 

8 IONOSPHERE 

-*6 

LOCAL TIME 

WITHOUT   DIFFUSION 
WITH   DIFFUSION 

(a) 

WITHOUT  DIFFUSION 
WITH DIFFUSION 

(b) 

Figure 4.  Ionospheric equipotentials for (a) the canonical model with a dayside separator and 
(b) the canonical model with a dayside A-type null. 

2.2.   Stern Singularity 

The second difficulty, referred to as the Stern singu- 
larity by Sisco e [1988], is caused by the role of the two 
nulls as the only topological singularities of the canon- 
ical model.  For any orientation of the IMF other than 
exactly southward, all field lines coating the £A (EB) 
surface intersect at the A null (B null), which, in turn, 
connects to the ionosphere by a single jA (jB) line. The 
solar wind generates a motional electric field in the mag- 
netosphere, governed by the equation E + v x B/c = 0. 
The equipotentials for this electric field can be mapped 
along magnetic field lines onto the ionosphere.   Then 
as pointed out by Stern [1973] and explicitly calculated 
by Lyons [1985], the ionospheric equipotentials exhibit 
a singularity, i.e., a single point where all the equipo- 
tentials intersect and the electric field is infinite. 

The difficulty is not that this singularity occurs, for it 
is an intrinsic property of separatrices, but that it pre- 
vents the realization of the observed features of the iono- 
spheric auroral equipotential pattern. The Stern singu- 
larity is an inevitable consequence of the ideal MHD 
approximation E + v x B/c = 0. For a real plasma, 
there must be a small but finite departure from ideal- 

ness due to diffusion or other collisionless effects such 
as the electron inertia or anisotropic electron pressure 
tensor. Not unexpectedly, attempts have been made to 
resolve the second difficulty (i.e., the Stern singularity) 
by invoking a diffusion region so that the electric field in 
the "singular" region becomes finite [Vasylmnas, 1984] 
A diffusion region does indeed smear out the singular- 
ity, but the smeared singularity still casts its shadow 
m the ionospheric equipotentials which tend to crowd 
m the vicinity of where the Stern singularity was (see 
Figure 4a, for example). 

2.3.   Discordance on the Nightside 

As discussed by Siscoe [1988, p. 58], whereas "the 
dayside part" of the diffusion-based models "shows 
some agreement with observations, the nightside part 
seems hopelessly discordant." The discordance arises 
when we consider the expansive phase of the magne- 
tosphenc substorm. "In the ionosphere, the explosion 
of activity signaling the onset of the expansive phase 
occurs near local midnight and ... the activity remains 
relatively localized to a few hours of local time around 
midnight. Nearly unequivocally, the data show that the 
ionospheric site of dayside merging lies in the polar cap 
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Figure 5. Observed ionospheric equipotential patterns (courtesy ofWeimer). 

boundary in a region almost diagonally opposite to the 
point where the substorm expansive phase begins" [Sis- 
coe, 1988, p. 58]. However, incorporation of a diffusion 
layer in the canonical model leaves one with the conclu- 
sion that "if nightside merging occurs along the separa- 
tor line in the canonical separator line model, it must 
manifest itself in the ionosphere in a region contiguous 
with the region of dayside merging. This ineluctable 
property of the model seems in essential conflict with 
the observations" [Siscoe, 1988, p. 58]. In Figures 4a 
and 4b, we give a qualitative sketch of the equipoten- 
tial patterns when the projection of the IMF field in the 
equatorial plane lies in the dawn-dusk and day-night 
directions, respectively. It is clear from Figures 4a and 
4b that the active region rotates with the IMF orienta- 
tion, which contradicts the observational picture. Typi- 
cal observed ionosphere electrical equipotential patterns 
are shown in Figure 5 (reproduced from Weimer [1995]) 
for various IMF orientations. It follows by inspection 
that the pattern is always broken at local-noon sec- 
tor regardless of the IMF orientation in the equatorial 

plane. Hence we are led to the conclusion "One canon- 
ical separator line model cannot account for both ... 
[dayside and nightside] processes" [Siscoe, 1988, p. 58]. 

This difficulty is unavoidable in the canonical model, 
as shown in Figures 4a and 4b, because the location of 
the single separator is determined by the IMF orienta- 
tion. As the IMF orientation with respect to the Earth's 
field dipole axis changes, the single separator can lie in 
any local-time sector. Attempts have been made to cure 
this difficulty by introducing an unbalanced dayside- 
nightside merging model [Siscoe and Huang, 1985]. But 
as discussed by Siscoe [1988], such a model also fails 
to reproduce the observational feature that the dayside 
"center-of-action" in the ionosphere is always around 
the local-noon sector. Alternatively, a "split separator" 
model, developed by Crooker [1985], includes the effect 
of the Chapman-Ferraro current sheet coating the mag- 
netopause to resolve this difficulty. In this model the A 
(and the B) null is split into a neutral line terminated by 
a pair of nulls A' and A" (B' and B"). The A' and the 
B' nulls remain where the original A and B nulls were, 
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while the A" and the B" nulls form a new separator 
right in the local-noon sector (illustrated by Figure 18 
of Siscoe [1988]). However, once again one gets into the 
difficulties (discussed by Siscoe [1988]) associated with 
magnetic merging in such a geometry, because such a 
geometry is structurally unstable, i.e., the neutral line 
in 3D can be destroyed by an arbitrarily small perturba- 
tion. This issue has been discussed by Greene [1988] and 
Lau and Finn [1990] who give a proof that a continuum 
of nulls, while stable in two dimensions, is structurally 
unstable in three dimensions. 

Before we conclude this section, we comment on other 
interesting efforts to resolve the difficulties of the canon- 
ical model. Notable among them is the "current pene- 
tration" model [Alekseyev and Belen'kaya, 1983]. This 
model makes the assumption that the merging line is 
always perpendicular to the IMF orientation which ex- 
plains why it is sometimes referred to as a "tangent 
merging line" model [Siscoe, 1988]. However, in a spe- 
cial case such as the coupling to a northward IMF, it 
is clear by inspection that the location of the merg- 
ing line is not given correctly. A more recent current 
sheet model due to Toffoletto and Hill [1989, 1993] pre- 
scribes a reasonable location for the merging line and 
predicts qualitatively the observed ionospheric equipo- 
tential patterns. It is interesting to note that the 
Toffoletto-Hill model relies on a special twisted local 
field configuration to create a dayside neutral merging 
line and a nightside neutral line. In topological terms, 
the model is of type S regardless of the IMF orientation. 

3. The A-B Web Model 

3.1.   Geometry 

We propose that the canonical model, in which the 
Earth's magnetic field is axisymmetric and includes two 
nulls, be generalized to a nonaxisymmetric geometry 
which includes a "web of nulls and A-B lines" [Greene, 
1993]. In reality, the real magnetosphere does not have 
the axisymmetry of the dipole field, nor is the IMF ex- 
actly uniform. The axisymmetry of the Earth's dipole 
field is clearly broken by the depression in the dayside 
and the stretch in the nightside by the IMF. Observa- 
tions indicate that spatial nonuniformity is a generic 
feature of the IMF. (See, for instance, the text by 
Parks [1991] and other references therein.) The spatial 
nonuniformity can be temporally intermittent, such as 
that caused by a directional discontinuity, with a typical 
thickness of about 2 RE, generally observed as it passes 
a spacecraft in about 30 s at a speed of approximately 
420 km/s, about once an hour. The nonuniformity can 
also have a steady component on a longer spatial scale 
of 10 RE or so, caused by the interaction of the solar 
wind and the magnetosphere. The analytical represen- 
tation of the magnetic field and the kinematic analysis 
of the reconnection in the new model is discussed in sec- 
tion 3.2; we begin here with a qualitative description. 

The new model is largely motivated by the "split- 
separator model," which, as pointed out above, is topo- 

logically unstable and marks "the end of the road we 
started on by following the canonical separator line 
model" [Siscoe, 1988, p. 61]. In the new model, the null 
of A type is broken into an A-B-.. .-B-A line while the 
null of B type is broken into an B-A-.. .-A-B line. Such a 
configuration is generally structurally stable, with the 
number of nulls on the A-B-.. .-B-A and B-A-.. .-A-B 
lines determined by the spatial dependence of the mag- 
netic field. The most simple case is realized when the 
A-null (B-null) of the split separator model is replaced 
by an A-B-A line (B-A-B line). We repeat for empha- 
sis that whereas in the split-separator model each of 
the A and B nulls is stretched into a neutral line con- 
sisting of infinite numbers of continuous nulls and is 
terminated by two T-type nulls, in the new model each 
null is broken into a null line containing a finite num- 
ber of discrete nulls and terminated by a pair of A (B) 
nulls, if the original null is A type (B type). Therefore 
the null line can keep the dayside center of action in 
the local-noon sector as the split-separator model does 
but without the difficulties caused by null-splitting: it 
is structurally stable and has an X point reconnection 
feature [Lau and Finn, 1990; Greene, 1993]. 

For reconnection of type S, the X chain becomes an 
-A-B-A- null line circling all the way from the dayside 
to the nightside. Generally, in reconnection of type G 
(including the type N), the northerly A-B-A line moves 
toward the south, while the southerly B-A-B line moves 
toward the north, as shown in Figure 6a. As 6 —* 0, 
both lines approach the equatorial plane. The A-B- 
.. .-B-A line on the duskside makes a half circle from 
the dayside to the nightside, while the B-A-,. .-A-B line 
makes the other half circle (Figure 6b). When 6 = 0, the 
A nulls terminating the A-B-.. .-B-A line connect with 
the B nulls terminating the B-A-.. .-A-B line and thus 
realize an entire -A-B-A-line on the equatorial plane 
encircling the globe. Note that we have thus resolved 
the first difficulty, the geometric discontinuity at the 
transition from 6 —► 0 to 9 = 0, of the canonical model. 
This resolution becomes possible because the two A and 
B nulls of the axisymmetric canonical model have now 
been replaced by a web of A-B nulls. 

What happens to the Stern singularity (Figures 4a 
and 4b)? Since each of the two nulls in the canonical 
model is transformed into a null line in the new model, 
one-point singularity is replaced by multiple-point sin- 
gularities. As discussed in section 2, the presence of 
such singularities in the ideal limit should not be sur- 
prising and is an intrinsic feature of Separatrices. In 
practice, the singularities will be resolved by the pres- 
ence of a small but finite diffusion (or other nonideal 
MHD effects) as in the other diffusion models discussed 
above. In fact, the electric potential drop along a sep- 
aratrix sustains a reconnection electric field En. (We 
elaborate on this point in section 4.) With this E» field 
on those separatrix lines, our A-B web model gives an 
ionospheric equipotential pattern of the type shown in 
Figure 7. Qualitatively, the picture seems to be in closer 
accord than Figures 4a and 4b with the observed pat- 
tern shown in Figure 5. 
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Figure 6. Geometry of reconnection of type G (arbi- 
trary IMF orientation) in the A-B web model when the 
IMF is oriented with (a) 6 > w/2 and (b) 9 < it/2. 

(b) 

Finally, the A-B web model cures, in the same way 
as the split null-line model (but without the structural 
instability), the third difficulty of the canonical model: 
the discordance with the observational fact that most 
dayside merging activity during the expansive phase of 
a substorm occurs in the local-noon sector. The diffi- 
culty is unavoidable in the canonical model because the 
location of the single separator is determined by the 
IMF orientation. As the IMF direction rotates around 
the Earth's magnetic dipole axis, the separator can be 
located, in principle, in any local-time sector. However, 
as shown in Figure 6, on an -A-B-A- web, after the 
two nulls are split, the "single separator" always moves 
to the local-noon region just as in the split-separator 
model. It is on this separator that reconnection is forced 
by the solar wind. In Figure 7, it is evident that the 
ionospheric equipotential pattern is broken at the local- 
noon sector where the A terminator of the separator line 
is mapped. 

3.2.   Kinematics of Magnetic Reconnection 

For a magnetic field B embedded in a fluid, v is called 
"the velocity of the magnetic field," if it obeys the equa- 
tion [Newcomb, 1958] 

dB 
dt 

- V x (v x B) = 0 . 

Alternatively, since by Faraday's law, 

VxE = -- — , 
c at 

(2) 

(3) 

the restriction imposed by (2) is that the electric field 
E can be expressed in the form 

„        v x B     __ 
E = V$ , (4) 

where $ is a scalar function. Equation (4) can be solved 
if we satisfy the solubility condition 

B   V$= -E   B (5) 

When a "decent" solution [Greene, 1988] of (5) (sub- 
ject to boundary conditions) exists, the "velocity of the 
magnetic field" is given by 

V = CJB-
2
(V$ + E) xB (6) 

In the context of the present discussion, the sites of 
magnetic reconnection lie where v is very large or sin- 
gular. It is clear that in three dimensions, magnetic 
nulls are a copious source of separatrices where solu- 
tions of (5) generally do not exist. 

!!f/7 

WITHOUT   DIFFUSION WITH  DIFFUSION 

Figure 7. Ionospheric equipotentials for the A-B web 
model. 
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These considerations make it clear why the Stern 
singularity is unavoidable within the framework of- the 
ideal MHD model. Since in ideal MHD, we have E + vx 
B/c = 0, (5) implies that B • V$ = 0. In other words, 
there is no parallel electric field or a potential drop along 
a magnetic field line. Since all field lines, except the -yB 

line, on the separatrix must pass through the A-type 
null which is connected to the ionosphere by only one 
JA line, all equipotential lines must then meet at the 
same singular point at the ionosphere, with the annular 
region squeezed out of existence. On the other hand, 
in the A-B web model, all separatrix field lines that 
lie between neighboring JB lines map onto one singular 
point in the ionosphere (Figure 6a). If the neighboring 
JB lines are generated by a pair of neighboring B-type 
nulls, the singular point then is the mapping of the A- 
type null in between the pair of B nulls. However, since 
field lines between different neighboring nulls map to 
different singular points, we have multiple singularities 
in the ionospheric mapping pattern (Figure 7). In prac- 
tice, the resolution of all such singularities, which are 
an intrinsic feature of the potential mapping procedure 
involving a separatrix, is accomplished by noting that 
there is a nonzero parallel electric field due to nonideal 
effects in Ohm's law (such as resistivity or finite particle 
inertia). In the context of the canonical model as well 
as the A-B web model, this nonideal region smooths 
out the singularities. (We repeat for emphasis that the 
problem with the canonical model is not that it needs 
a diffusion region to resolve the Stern singularity, but 
rather that even after this is done, one is left with the 
third difficulty, i.e., the discordance with the observed 
feature of nightside merging.) 

We now consider a specific (local) representation of 
the magnetic field that allows for the formation of an 
A-B web. In the standard geocentric solar ecliptic sys- 
tem, x points from the Earth to the Sun, y from dawn 
to dusk, and z from south to north. Associated with 
this system is the standard cylindrical coordinate sys- 
tem (R,<f>,z), with R = \Jx2 + y2, 4> = tan-1(y/x), 
in which we approximate the magnetic field near the 
merging line (z = 0, R = Ro) as 

BR = -B0 — 
K 

R- Ro   .    ,, 
■ aBo —  sin kq> , 

B± 
> 

Ro 

1 ) cos k(j) 

Bz = -A250 

R_ 

Ro 

R- Ro   ,   0   az    . 
—5 h Bo — sin k<p ,        (7) 

KQ no 

Redefining the dimensionless variables 

— _B       — -z       R~R° 
Bo Ro '        Ro 

and taking r, z <C 1, we have 

Br = — z + ar sin k<j> , 

2a 
B^ = — cos k<t> , 

Bz = -X2r + az sin k<f> , (8) 

The magnetic field (8) has the following features: (1) an 
A-B-A null line at the intersection of the surfaces r = 0 
and z = 0 (i.e., R = R0 and z = 0); (2) A-type nulls 
at r = 0, <j> = (2n + l/2)ir/k, z = 0 and B-type nulls 
at r = 0, <j> = (2n - l/2)ir/k, z = 0, where n = 0, ±1, 
±2,...; (3) the z = -Ar surface as a EA surface and the 
z = Ar as a £# surface. Far away from r = 0, we obtain 
the IMF B ss Bzz. For instance, the model can describe 
qualitatively the geometry of an S-type coupling that 
includes an -A-B-A- line belt with a width \z\ < life at 
the magnetopause, located roughly at R = R0 ~ lOife. 

The investigation of the dynamics of such a geome- 
try is a complicated problem, beyond the scope of this 
paper. Instead, we investigate the simpler problem of 
kinematic reconnection on the Separatrices associated 
with the A-B null lines. 

Using (8), the field lines near the A-B null line can be 
shown to lie at the intersection of a set of level surfaces 

z + Ar 
Ar 

a/A 

tan = Ci, 

AV) cos k(f> = C2 

(9) 

(10) 

where C\ and C2 are parameters and we have used the 
approximation Rd<j>/Ro = d<j> near the A-B null line. 

We now proceed to solve the induction equation (2) 
for v, given B. Since the electric field is given by 
E = -V$ - dA/dt, the condition E • B = 0 for an 
ideal plasma gives 

B • V* = -B • dA/dt (11) 

Following Lau and Finn [1990], we add a time-varying 
vector potential to the time-independent vector poten- 
tial corresponding to the static B field. In other words, 
we write, A = A0(x) + Aj(x,i) where B = V x A0, 
and choose 

tE0Ro 2 nn\ 

where Ro is a constant and the parameters k, a, and 
A are positive and dimensionless, with a <C 1, a A2 ~ 
1. The model equations (7) can be seen as variant of 
the TH89 model with selected Fourier components to 
enable the formation of an A-B line. Recently, there 
has been some numerical evidence that such a structure 
appears in three-dimensional MHD simulations of the 
magnetosphere [Ogino et al., 1994]. 

Then (4) becomes 

11 

B- V$ 
B^EQRQ 

R (13) 

Equation (13) can be integrated, using the method of 
characteristics, to yield 
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$ 
/dl B^EQRQ _   f 

B       R    .' J 
Rdcj> B^EQRO 

R 

= E0Ro[<!>-4>o(r,<f>,z)] , 

where, choosing $ = 0 at r = 0, we have 

(j>Q = — arctan C\ 
k -Ar <t> 

IT 

2k 

(14) 

(15) 

Using (6), we calculate the "velocity of the field line" 
at the Separatrices z — ±\r: 

2cE0 

B2 rBz iBr)- 
VCi xB 
k(l + C2) 

Using the relations 

dd 
= 

2azCi 
dr z2 — X2r2 

dd 
= 2ard 

8z z2 — X2r2 

(16) 

(17a) 

(17b) 

we readily see that the velocity has a power-law sin- 
gularity at the separatrix [Lau and Finn, 1990]. This 
singularity is resolved, in practice, by the presence of 
a diffusion region near the separatrix where small but 
finite departures from ideal MHD play a crucial role. 

4. Type N —> S Reconnection and 
Possible Implications for Substorms 

The global model discussed above is qualitative. Yet 
it is interesting to consider the local implications of this 
model for substorms. In the absence of a dynamical 
treatment, the present model cannot provide any infor- 
mation regarding time scales, but it does bring out new 
possibilities regarding the qualitative evolution of the 
geometry. 

We have considered above the slow and continuous 
change of the IMF orientation. As this orientation 
changes smoothly and continuously from northward to 
southward, the geomagnetic field configuration changes 
smoothly and continuously from type N, through type 
G, to type S. However, it is widely believed that most 
substorm occurrences involve a sudden southward turn- 
ing of the IMF orientation. During sudden changes 
of the orientation of the IMF, the topological changes 
should be sharper and the transitions different than in 
the continuous case. Consider, for simplicity, the two- 
dimensional case. If the initial geometry is of type N, 
with two merging points at the top and the bottom of 
the magnetosphere, a sudden change of the IMF ori- 
entation to the southward direction must lead to the 
formation of a type-S geometry, with a dayside merging 
line and a nightside "neutral line." However, the sys- 
tem will pass through stages that mediate the transition 
between the initial and final states and account for the 
time required for the sudden change to propagate from 
the dayside merging line to the nightside neutral line. 

In this section we will focus our discussion on the tran- 
sition. 

4.1.   A Growth Phase Following the Southward 
Turning of the IMF 

Let us assume that initially the IMF is northward. 
Then there are two distinct null lines at the north and 
south polar cusp regions. As is well known, the mag- 
netic flux convection is essentially tailward. If the IMF 
suddenly changes orientation and becomes southward, 
there must be a neutral-sheet separatrix (NSS) in be- 
tween the northward and the southward lines of the IMF 
(Figure 8a). As soon as this NSS reaches the dayside 
separatrix (the E surfaces) of the geomagnetic field, an 
-A-B-A- null line will form and dayside reconnection, 
which reduces the dayside flux, will commence. How- 
ever, on the other side of NSS, the IMF is still north- 
ward and the corresponding geometry is still of type N. 
In this geometry, the merging at the north and south 
null lines (N&SNLs) is between the IMF field lines and 
the nightside closed field lines, which also reduces the 
nightside flux. 

The NSS surface will be convected rapidly by the so- 
lar wind to the polar cusp region. As shown in Fig- 
ure 8b, this NSS alters qualitatively the reconnection 
processes at the north and south null lines. It stops 
reconnection between the northward IMF and the tail 
field and starts a new reconnection process on the NSS, 
transferring flux, particles, and energy into the lobes. 
This will lead to the completion of a type-S circle: the 
dayside merging will bring closed dayside flux out of 
the polar region that will be eventually transferred into 
the nightside closed field-line region at the N&SNLs. 
As this flux transfer is completed, there should be an 
enhancement of the sunward convection, as magnetic 
flux is lost at the dayside and gained at the nightside 
in a reconnection process of type S. Thus, as is com- 
mon knowledge for type-S convection, a velocity shear 
will tend to build up at both dawn and dusk sides as 
the process continues. As suggested, for example, by 
the plasma sheet boundary layer (PSBL) model [Ros- 
toker and Eastman, 1987; Eastman et al., 1988], this 
shear flow will drive the region 1 and the region 2 field- 
aligned currents. The reconnection process broadly re- 
sembles the S-type process discussed earlier; however, 
it is different from the process that occurs for a steady 
southward IMF in that it provides a possible mechanism 
for particle, flux, and energy input from the solar wind 
into the tail in the near-Earth sector of the tail where 
the N&SNL merging lines are located. We classify this 
type of reconnection as north-to-south (N —* S) type. 
An important consequence of this N-S type reconnec- 
tion is that the IMF flux and solar wind particles will 
be brought into the central plasma sheet from both the 
dawn and dusk sides of the near-Earth plasma sheet, 
since reconnection occurs dominantly on the separator 
connecting the north A-null terminator and the south 
B-null terminator of the null lines. This may be a 
possible explanation for the observed solar wind par- 
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NSS 

/ NSS 

Dayside null line 

Figure 8. Evolution of the neutral-sheet separatrix (NSS) as the IMF turns from northward to 
southward, (a) The beginning of the process at the dayside, (b) a second stage of the process 
when the NSS has moved beyond the polar cusp region, and (c) a later stage as the current sheet 
thins are shown. 
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Dayside null line 

Figure 8. (continued) 

tide component in the central plasma sheet during the 
growth phase [Lennartsson, 1992; Huang et al, 1992]. 

4.2.   The Onset of the Expansion Phase 

As the NSS moves further downstream, the geometry 
has to eventually evolve into a configuration of type S. 
During this process, the cross-tail current sheet keeps 
thinning further, driven by the solar wind (Figure 8c). 
For magnetic reconnection driven by inward boundary 
flows, the reconnection rate is mostly controlled by the 
driving electric field and rather weakly by the dissipa- 
tion mechanism [Sato and Hayashi, 1979; Wang et al., 
Fast reconnection and sudden enhancement of current 
sheets due to inward boundary flows, submitted for a 
Special Issue of Phys. Plasmas: Invited and Review Pa- 
pers from the 37th Annual Meeting of the Division of 
Plasma Physics of the American Physical Society, 6-10 
November 1995, 1995; hereinafter referred to as Wang 
et al., submitted manuscript, 1995]. 

It is widely believed that the current sheet thinning 
leads to the onset of the expansion phase at near-Earth 
distances, though there is, as yet, no definitive iden- 
tification of the precise physical mechanism for onset. 
Current-driven instabilities that can cause current dis- 
ruption and diversion [Chao et al, 1977; Lui, 1979; 
Lui et al., 1988, 1992], ballooning instabilities driven 
by plasma pressure gradients in regions of unfavorable 
curvature [Roux et al., 1991; Erickson and Heinemann, 
1994], and magnetosphere-ionosphere coupling [Kan et 
al., 1988; Kan, 1993] are among the mechanisms that 
are currently being considered, 

In the context of the near-Earth neutral line (NENL) 
model [Hones, 1979], it has been suggested repeatedly 
that collisionless tearing instabilities can provide a pos- 
sible mechanism for onset. This subject has a long and 

controversial history, and it has gradually become clear 
from independent analytical work and electromagnetic 
particle simulations by several groups that collisionless 
tearing modes are strongly stabilized by the presence of 
a Bz field. (See, for instance, the recent papers by 

Pellat et al. [1991], Wang and Bhattacharjee [1993], 
Bhattacharjee et al. [1994], and other references there- 
in.) Nonetheless, it is possible that in some circum- 
stances the Bz field may be reduced by strong externally 
driven flows from the boundary or if the equilibrium 
By field has a strong spatial dependence [Wang and 
Bhattacharjee, 1993]. Under these conditions, it may be 
possible to see a sudden transition to a fast growth of 
thin current sheets (Wang et al., submitted manuscript, 
1995). As to how the magnetotail with an embedded 
thin current sheet disrupts remains an open question. 
But assuming that one of the mechanisms mentioned 
above is operative, we proceed with our present discus- 
sion after the substorm onset and dipolarization have 
already occurred. 

4.3.   The Late Expansion/Recovery Phase 

The two N&SNLs will move equatorward further and 
eventually form a nightside null line just before or in this 
late phase. The nightside null line may be expected to 
eventually cut the closed tail field to form a shorter tail 
and release a plasmoid, which is one of the significant 
predictions of the NENL model. However, in the pres- 
ence of a significant By field (see, for example, Akasofu 
et al. [1978]), the precise topological characteristics of 
this plasmoid are likely to be much more complex than 
originally envisioned. Perhaps it is more appropriate 
to regard such structures as flux ropes with significant 
field-aligned currents [Elphic et al., 1986; Paranicas and 
Bhattacharjee, 1989].   The newly formed null line will 



move downstream further,  and the configuration will 
tend to the one associated with S-type coupling. 

5. Discussion 

The main goal of this paper is the development of 
a three-dimensional geometrical framework for under- 
standing dayside as well as nightside reconnection. As 
discussed in sections 2 and 3, this framework is a nat- 
ural generalization of the canonical model and its vari- 
ants which have provided much of the basis for our 
present understanding of observations as well as three- 
dimensional MHD simulations. We are motivated to 
seek this generalization not merely to pursue general- 
ity for its own sake but because some important obser- 
vational features are not adequately addressed by the 
earlier models. In particular, we have considered quali- 
tatively, but in some depth, the observations pertaining 
to the equipotential patterns in the ionosphere. 

The canonical model with two nulls is generalized to 
an A-B web model with multiple nulls and separatrices. 
We have shown that this generalization resolves some 
of the outstanding difficulties of the canonical model, 
one of which has to do with the signatures of nightside 
reconnection in the expansion phase of a substorm. It 
has been our guiding principle that the construction of 
a global geometrical framework must include at once 
both the dayside and the nightside geometry and that 
it would be difficult to develop a model for substorms 
without such an effort. In particular, since magnetic 
nulls are the source of the A-B web, it is necessary to 
examine magnetic field data from observations as well 
as computer simulations to identify magnetic nulls. It 
is interesting to note that there is clear evidence of null 
lines in both northern and southern hemispheres in the 
recent studies of Kaymaz et al. [1994a, 1994b] based on 
IMP 8 data. 

Our model is merely kinematic and does not pro- 
vide any information on self-consistent plasma dynam- 
ics. We see it as a first step toward defining the correct 
geometry on which further dynamical studies should be 
based. A dynamical study, which is likely to involve 
extensive computation, should provide quantitative in- 
formation on how reconnection at N&SNLs can transfer 
particles, energy, and flux into the tail region and how 
rapidly the current sheet thins. This may also pave the 
way for a clearer understanding of the possible mecha- 
nisms that can trigger the onset. We hope to explore 
these issues in future work, based on numerical simula- 
tions. 
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Nonlinear dynamics of the m=1 kink-tearing instability in a modified 
magnetohydrodynamic model 
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A theory is given for the nonlinear dynamical evolution of the collisionless m = 1 kink-tearing 
instability, including the effects of electron inertia and electron pressure gradient in a generalized 
Ohm's law. It is demonstrated that electron pressure gradients can cause near-explosive growth in 
the nonlinear regime of a thin m = 1 island. This near-explosive phase is followed by a rapid decay 
phase as the island width becomes comparable to the radius of the sawtooth region. An island 
equation is derived for the entire nonlinear evolution of the instability, extending recent work on the 
subject [X. Wang and A. Bhattacharjee, Phys. Rev. Lett. 70, 1627 (1993)] to include the effects of 
both electron inertia and electron pressure gradient. Comparisons are made with experimental data 
from present-day tokamaks. It is suggested that the present model not only accounts for fast 
sawtooth crashes, but also provides possible explanations for the problems of sudden onset and 
incomplete reconnection that have been, heretofore, unexplained features of observations. © 7995 
American Institute of Physics. 

I. INTRODUCTION 

The m = 1 kink-tearing instability in tokamaks is distinct 
from the m>\ tearing instabilities. In resistive magnetohy- 
drodynamics (MHD), Rutherford1 showed that the nonlinear 
m> 1 modes evolve in time according to the relation w~ rjt, 
where w is the size of the island, 77 is the resistivity, and t is 
time. Nonlinear m=\ modes behave differently and are 
characterized by a current sheet at the separatrix. The current 
sheet was seen in several numerical simulations,2-7 and has 
been described analytically by Waelbroeck.8 If the current 
sheet is neglected, one might infer that the nonlinear mode 
grows exponentially.9 However, Waelbroeck has demon- 
strated that the presence of the current sheet in a Y-shaped 
separatrix slows down the nonlinear growth of the mode to 
an algebraic rate, given by the relation \v~rjt2, consistent 
with the predictions of the Sweet-Parker10 and Kadomtsev" 
models. Recently, Biskamp12 has extended Waelbroeck's 
analytical results, and shown that the theory is consistent 
with high-Lundquist-number numerical simulations. 

Free reconnection due to the m=\ instability is very 
similar to forced reconnection, in that both processes are 
"helicity conserving."813 Forced reconnection, which is 
widely believed to occur in laboratory and space plasmas, 
can also produce current sheets.4'5,8,13 This makes the theo- 
retical study of the m = 1 instability all the more interesting, 
because it represents a useful paradigm for fast reconnection 
in high-temperature plasmas. 

Although the nonlinear dynamics of the m = 1 instability 
is well understood in the resistive MHD model, the predic- 
tions of the theory do not account for significant features of 
sawtooth oscillations in tokamaks. There are three principal 
observational features of sawtooth oscillations that pose a 
challenge for theory: the first is the rapidity of the sawtooth 
collapse; the second is the sudden onset of the collapse; and 
the third is the incomplete relaxation of the current profile 
during which the central q value remains nearly fixed at a 

value lower than unity while the temperature profile relaxes 
completely. 

In the 1970s, essential features of the available data were 
thought to be explained by the Kadomtsev model.11 Kadom- 
tsev showed that in the nonlinear phase of the m = 1 kink- 
tearing mode, reconnection occurs at the separatrix on the 
characteristic Sweet-Parker time scale10 TK=(TATR)

112
, 

where rA is the Alfven time scale and TR is the resistive 
diffusion time scale. For most tokamaks operating during the 
1970s, the time scales rA and TR were typically of the order 
of 10~7 and 10~' s, respectively, which gave rK~ 100 /AS, in 
agreement with the sawtooth collapse time then observed. In 
larger and hotter tokamaks, such as the Joint European Tok- 
amak (hereafter JET)14 and the Thermonuclear Fusion Text 
Reactor (hereafter TFTR),15 the Kadomtsev model predicts a 
time scale which is one to two orders of magnitude larger 
than the observed collapse time. (It is not uncommon in these 
devices to obtain collapse times in the range 20-100 ßs, 
whereas rK~ 2-10 ms.) It is possible to bring the theoretical 
prediction of the collapse time closer to observations by in- 
voking a resistivity larger than classical in the reconnection 
layer, but since the resistive m = 1 kink-tearing mode slows 
down nonlinearly and exhibits algebraic growth with time, it 
would still not be possible to account for the onset or "fast 
trigger" of the sawtooth collapse.16 These discrepancies be- 
tween the theoretical predictions of resistive MHD and ob- 
servations have stimulated considerable theoretical research. 
While it is widely believed that the nonlinear m = 1 instabil- 
ity in the collisionless regime is a strong candidate for the 
observed features of sawteeth, there is as yet no consensus 
on what should be the appropriate physical ingredients of a 
correct theoretical model of the m = 1 instability. In other 
words, if we write the generalized Ohm's law in the form 

E+uxB/c = R (1) 

(where E is the electric field, B is the magnetic field, u is the 
plasma velocity, and c is the speed of light), opinions appear 
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to be divided on what physical effects R must include in 
order to account for the salient features of observations. 

Wesson17 has proposed a heuristic modification of the 
Kadomtsev scaling," based on the form R= 77J 
+ (4ir/<ope)u- VJ. Wesson's scaling predicts much faster re- 
connection rates than Kadomtsev's, and is apparently in good 
agreement with experimental results. In contrast, Drake and 
Kleva have shown by numerical simulation that if R 
= 77J + (4Tr/co2

pe)DJ/Dt (where DIDt = dldt + u-V), then 
in the limit 77—»0, current sheets tend to form on spatial 
scales smaller than the electron collisionless skin depth 
de = cl(Dpe (where c is the speed of light and (ope is the 
plasma frequency), which slows down the reconnection rate. 
Thus, Drake and Kleva infer that electron inertia, by itself, 
cannot produce a fast sawtooth crash. This inference is not 
corroborated by Ottaviani and Porcelli,19 who give numerical 
and analytical evidence that electron inertia, by itself, can 
lead to reconnection rates that are faster than exponential 
(quasiexplosive) in time. 

Although, by the account given above, there is disagree- 
ment at a fundamental level in Refs. 17-19, it is widely 
appreciated that at the high temperatures typical of present- 
day tokamaks, it is necessary to go beyond the basic model 
for R considered in Refs. 17-19. The four-field, two-fluid 
model of Hazeltine et al.20 is an attempt to generalize the 
well-known reduced magnetohydrodynamics (hereafter 
RMHD) model,21 incorporating physical effects associated 
with finite-ion-Larmor radius (FLR), compressibility, and 
electron adiabaticity. Aydemir22 has found by numerical in- 
tegration of the four-field, two-fluid equations that parallel 
electron pressure gradients cause rapid acceleration in the 
nonlinear growth of the m = 1 mode. (Similar numerical re- 
sults have also been reported by Kleva et al.23) Zakharov 
et al.24 have argued, based on analytical approximations of 
the four-field model, that in the presence of a parallel elec- 
tron pressure gradient, the early nonlinear growth of m= 1 is 
exponential in time. 

Wang and Bhattacharjee25 have recently developed an 
analytical model that reproduces the salient features of m- 1 
island growth seen in Aydemir's simulation. The calculation 
given in Ref. 25 is based on a generalized Ohm's law that 
includes the effect of electron pressure gradient, but it does 
not rely on the assumption of isothermality, inherent in the 
four-field model. Recognizing that the electron pressure gra- 
dient is the key feature for accelerated growth in Aydemir's 
simulation, Wang and Bhattacharjee keep this effect in the 
generalized Ohm's law and show that it causes near- 
explosive growth of the m = 1 instability. These analytical 
results provide a possible explanation for the sudden onset of 
the sawtooth collapse seen in tokamaks like JET16 

In this paper, we develop further the theory of the m = 1 
instability given in Ref. 25 in the context of a "modified 
magnetohydrodynamic" (hereafter MMHD) model, intro- 
duced in Sec. II. The basic goal of this model is to provide a 
framework for the inclusion of some important physical ef- 
fects generally not considered in resistive MHD. The effects 
that we propose to study are primarily finite electron inertia 
and parallel electron pressure gradient. (The effect of hyper- 
resistivity is described in the Appendix.) We make the sim- 

plifying approximation that the plasma is of constant density 
and hence incompressible, and furthermore, that the electron 
pressure pe is a scalar. With these approximations, the quan- 
tity R on the right-hand side of Ohm's law in MMHD is 
written as 

4-tr DJ Vpe    JxB 
(2) 

where n is the plasma number density and e is the magnitude 
of the electron charge. In Sec. II, we compare reduced equa- 
tions derived from MMHD with the four-field model. In Sec. 
Ill, we use the constraint of helicity conservation26'27 to re- 
visit the geometrical structure of current sheets8'12 in resis- 
tive MHD. In Sec. IV, we investigate the effect of finite 
electron inertia and parallel pressure gradients, and compare 
our results with those given in Refs. 18, 19, and 24. In Sec. 
V, we compare the predictions of theory with experimental 
results; this comparison includes not only the ubiquitous ob- 
servations of fast crash and sudden onset, but also the long- 
standing, and, as yet unresolved, observation of incomplete 
current relaxation, for which we propose a possible qualita- 
tive solution. We conclude in Sec. VI with a summary and a 
discussion of the implications of our work. 

II. THE MODIFIED MAGNETOHYDRODYNAMIC 
MODEL (MMHD) 

A. The basic equations 

The basic equations of MMHD are the same as the stan- 
dard equations of incompressible resistive MHD, except for 
the generalized Ohm's law. The equations that are the same 
in the two models are the momentum equation, 

Du JxB 
P"^7-_V/7-l ,    p = const, 

the incompressibility condition, 

V-u=0, 

and Maxwell's equations, 

VxB= — J, 

(3) 

(4) 

(5) 

(6) 

(7) 

l <?B 
VxE= . 

c  dt 

The generalized Ohm's law is written as 

uxB 477 DJ    WPe    JxB 
E+ = 77J+ -^- — + , 

c a)-pe Dt      ne       nee 

Equation (7) is a special case of the generalized Ohm's law 
found in textbooks from which some terms have been 
dropped; these are terms that are multiplied by the mass ratio 
mjmj, as well as terms such as V-(Ju) that will turn out to 
be small once the ordering in the reconnection layer is im- 
posed. We have also made the simplifying assumption that 
the electron pressure is scalar, and that ion temperature gra- 
dients can be neglected. (In particular, one can make the 
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simple approximation that the ions are cold.) Since n is a 
constant, we can write V/5=V/?P in Eq. (7). Alternatively, 
Eq. (7) can also be written as 

E + 
v„xB 

c 

417 DJ Vp 
(8) 

where ve is the electron fluid velocity. In Ref. 25, the last 
term in Eq. (8) was referred to as the "Hall term," but in 
standard parlance, the last term in Eq. (7) bears this name. 

B. Reduction of the basic equations 

We simplify Eqs. (3)-(7) using the RMHD ordering.2' 
We write B=B0l+BP, where B0 is the constant toroidal 
field, f is the toroidal angle, and BF<BQ. The auxiliary mag- 
netic field B^ is given by the relation 

B^ — Bp 
q,R 

rd=Vipxl, (9) 

where r is the radial, 8 is the poloidal, and £( = z/R) is the 
axial coordinate in a cylinder of periodicity length 2irR, 
qs= 1 at the singular surface r=rv for the m— I, n= 1 in- 
stability, and if/ is the helical flux function. The toroidal cur- 
rent is given by 

7,or    417 
J + 

2JV 
RsRl 

10) 

where J^ — V'if/. Using the incompressibility condition (4) 
and ordering the toroidal flow to be small, we write 

which gives the axial vorticity 

:n) 

12) 

Taking the projection of (7) parallel to B, we obtain, in 
RMHD ordering, 

Di//      , DJ       c 

-D7 = d~<Dl-^B-0
B-Vp- 

The curl of the momentum equation yields 

Du> 
4irp 

Dt 
B-vy. 

(13) 

(14) 

To summarize, all the fluid variables can be calculated in 
terms of the three scalar functions: if/, <t>, and p. Equations 
(13) and (14) are the dynamical equations for i]/ and </>, re- 
spectively. An equation for p can be obtained, in principle, 
by taking the divergence of the momentum equation (3). The 
results that we describe here depend strongly on the presence 
of pressure gradients in Ohm's law, but they are not sensi- 
tively dependent on the equation of state. We demonstrate in 
Sec. IV that in the reconnection layer, it is convenient to 
obtain information about p from the projection of the mo- 
mentum equation parallel to B. 

We now compare the reduced MMHD equations with 
the four-field equations."° In the four-field model, there are 
four scalar fields: the parallel vorticity, the flux, the electron 
pressure, and the parallel fluid velocity. Reduced MMHD is 
simpler, in that it involves the first three scalar fields of the 

four-field system, but not the last. This also means that re- 
duced MMHD omits compressibility effects, which we do 
not consider, qualitatively, to be a serious omission for the 
treatment of nonlinear tearing modes in tokamaks. In com- 
paring the two models, it should be observed that the parallel 
(electron) pressure gradient has different origins in the two 
systems. In MMHD, since the density is constant, the pres- 
sure gradient is entirely due to temperature gradients. In con- 
trast, since the four-field model assumes that the plasma is 
isothermal, the pressure gradient is entirely due to variations 
in density. (Indeed, the equation of state in the four-field 
model is nothing but the equation of continuity for the elec- 
tron density.) In other words, if the density is taken to be 
constant, there is no pressure gradient in the four-field 
model. This explains why Aydemir22 attributes the novel be- 
havior exhibited by the m= 1 mode in his simulation to "the 
coupling between the electron pressure gradient term in 
Ohm's law... and the parallel divergence of the electron ve- 
locity...." with the latter contributing to the variations in the 
density. 

The inclusion of (electron) temperature gradients in 
MMHD has significant physical implications for the linear as 
well as nonlinear regimes of the m— I mode. In the linear 
regime, it is well known that temperature gradients have a 
stabilizing effect on the w=l instability.28--11 Zakharov 
et air have presented some evidence that the occurrence of 
sawtooth oscillations in TFTR correlates well with the pre- 
dictions of the linear instability criterion. Since we are con- 
cerned in this paper with the nonlinear evolution of the in- 
stability, we shall assume that the linear instability criterion 
is satisfied, and that the destabilizing effect of magnetic shear 
overcomes the stabilizing effect of temperature gradients. 

The inclusion of temperature gradients has significant 
implications for the nonlinear evolution of the m-\ insta- 
bility. In particular, we note that the development of a current 
sheet in the early nonlinear stages of the instability causes a 
jump in the temperature across the separatrix, due to the 
requirement of force balance. Thus, the current sheet pro- 
duces a thermal barrier that can sustain sharp differences in 
temperature between the inside and the outside of an m= 1 
island in the early nonlinear stage of the instability. We dis- 
cuss in Sec. V that as the island grows to a large size, this 
thermal barrier is dissolved on the branch of the separatrix 
separating the island and the hot core, and a rapid flattening 
of the temperature profile in the sawtooth region occurs be- 
fore the reconnection is completed. 

III. NONLINEAR m = 1 INSTABILITY IN THE RMHD 
MODEL 

In this section, we revisit some aspects of the nonlinear 
theory of resistive m=\ kink-tearing modes. In resistive 
MHD. Ohm's law (12) takes the form 

fh\l TIC 
— + u-V<A= — J- 
dt 477 

(15) 

Following Rosenbluth et al?1 and Waelbroeck.'s the nonlin- 
ear evolution of m= 1 islands can be described by a se- 
quence of neighboring equilibria, which obey the relation 
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9 = 0 

(a) (b) 

FIG. I. 
The «connection geometry for the m= ,  mode: (a) initial state and (b) intermediate state after «connection begins. 

^*,0) = ft)(-*o)=0ol>+£(*,#)], (16) 

where tf/0 is the flux function in the initial cylindrical equi- 
librium, £is the radial displacement,x = r-rs, and *=^-f. 
[Here (r,6,£) is the standard cylindrical coordinate system. 
Our notation is somewhat different from that of Ref. 8, in 
that we label flux surfaces by x0, which denotes their radial 
position in the unperturbed configuration, whereas x is sim- 
ply the radial distance from the singular surface in the un- 
perturbed configuration.] In the vicinity of the rational sur- 
face, we have 

fo(x)^I</>oX2, (17) 

where we have set ifo(0)=0, and 

^r^-B)'r=r=-BP(r,)q'(rs). (18) 

Then, using (16), we can write the flux function as 

<A=^oV + fWcos#]2. (i9) 

The nulls of B^ occur where V<A=0, which yields an O point 
at #=0 and an X point at T?=T7. 

Figure 1 shows two flux surfaces (labeled by x0= ±X0) 
that reconnect to form an island of width w = 4X0. For an 
approximate evaluation of (19), we use, in the exterior re- 
gion, the linear eigenfunction28'31'9,12 

H 
£o>    xn<~X0 

0,       xQ>XQ. (20) 

The outer and inner branches of the separatrix are given, 
respectively, by 

x = X0 = w/4 (21) 

and 
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x--£0cos&-X0=-Zncosd-w/4. (22) 

The width of the island is 

" = 2f0. (23) 

We note that the geometrical structure given by (22) and 
(23) differs significantly from that given in Ref 12 It is 
assumed in Ref. 12 that the inner branch of the separatrix is 
a sh.fted half-circle of the same radius as the outer branch, 
and that the outer branch is the circle x = 0. Furthermore,' 
Ref. 12 argues that the inner branch coincides with the outer 
branch for |d|>irf2, leading to the formation of a current 
sheet on the latter part of the separatrix. This picture is some- 
what oversimplified, because it omits the important role of 
the helicity conservation constraint in producing a current 
sheet, that not only spans the Y points, but the entire 
separatrix. 

In Refs. 26 and 27, it is shown that the m= \ kink- 
teanng mode conserves magnetic helicity contained between 
two reconnecting flux tubes. Two tubes with the same value 
of helical flux reconnect at the separatrix to form one tube 
For an incompressible plasma, the constraint of helicity con- 
servation then implies that the area enclosed between the two 
flux tubes before reconnection should be equal to the area of 
the resultant tube after reconnection. We obtain 

■*(', +X„)2- ir(r,-X0)
2= ir\ r,+ 

r dr dd, (24) 

where 
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// 
r dr d-d=- 

2 

277/ W W 

d-&\ r,—;— — cos # 

■TT\ r. 
w 

'4'   + 

From (24) and (25), we obtain 

m vf 
l0=~ 

W 

Xn==4~327: 

Equations (21) and (26a) motivate the definitions 

www 

(25) 

(26a) 

(26b) 

where Xe is the innermost flux surface of the exterior (unre- 
connected) region and Xt is the outermost flux surface of the 
interior (island) region. All currents, initially located on the 
surfaces in the region X,-<|JC0|<X, , are squeezed into a nar- 
row strip that lies along the separatrix. Along this separatrix, 
the flux function remains continuous, but its normal deriva- 
tive is not. Thus, a current sheet is formed, encompassing the 
Y points as well as the rest of the separatrix. The importance 
of this current sheet, spanning the entire separatrix, cannot be 
overstated, because it explains why a thermal barrier appears 
to separate the inside and outside of the magnetic island in 
observations of the early nonlinear stage of a sawtooth. 

The geometry of the current sheet, sustained by the 
helicity-conserving reconnection process can be determined 
by the functions f(x) and g(d), defined in Ref. 8. These 
functions satisfy the relation 

Jr = F(^)-G(#) = (^Ö)2[/W-S(#)J.   (27) 

In the linear or early nonlinear stage of the instability, when 
the island is thin, Eq. (19) reduces to 

ifs=kt//'ox2 + x<p'^(x)cosd. (28) 

For such a thin island, near the X point, Eq. (28) gives 

/(*o) = *o (29) 

and 

s(#) = f2cos2 fl. (30) 

Near the O point, we have g(-d) = 0. The flux surface x0 

satisfying f(x0)^g(dm) will be "trapped" between the 
"mirror points" ±dm. Therefore, for the separatrix 
x0s±W4, the "mirror points" are determined by the rela- 
tion 

cos2 d„ 

which gives 

•#,„=±217/3, 

(31) 

(32) 

as found in Ref. 24 by numerical solution of the integral 
,32 equation-   governing the current sheet. (To be precise, Ref. 
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24 finds numerically that -n-#m= ±59.7°. As demon- 
strated here, this angle can also be determined by simple 
geometrical considerations.) 

In RMHD, it can be shown812 that w~ rjr. The slowing 
down of an exponentially growing linear instability to alge- 
braic (quadratic) growth in time can be attributed to the pres- 
ence of the current sheet on the separatrix encompassing the 
Y points. This slowing-down effect is, in a way, consistent 
with the results of Ref. 9, where it is demonstrated that if one 
neglects the current sheet, then the nonlinear m= 1 instabil- 
ity grows exponentially in time. 

As mentioned in the Introduction, the slow algebraic 
growth of the m=\ islands cannot account for the sudden 
onset of the sawtooth crash.16 Waelbroeck33 has recently pro- 
posed a mechanism for the onset of the crash, based on a 
transitional property of m= 1 islands in the RMHD model. 
The onset occurs when a slow m - 1 tearing mode, exhibit- 
ing Rutherford growth and no current sheet, makes a transi- 
tion to a m= 1 kink-tearing mode with a current sheet. Two 
points should be made about this suggestion. First, as Wael- 
broeck himself notes, the transition requires the presence of 
large precursor islands (of the order of 10 cm for JET), 
which are not observed in many sawtooth discharges. Sec- 
ond, the transition occurs from a regime in which the island 
grows as t to a regime in which the island grows as t2, but 
both of these are algebraic regimes, much too gradual to 
account for the temporal suddenness seen in the data. 

IV. NONLINEAR m=1 INSTABILITY IN MMHD 

The parallel component of the generalized Ohm's law in 
MMHD is given by Eq. (13). In the absence of the electron 
pressure gradient effect in Ohm's law, the singular layer in 
the early reconnection stage is of the order of the collision- 
less skin depth dt .17~19 The presence of the electron pressure 
gradient broadens the singular layer to a width of the order of 
the ion-sound Larmor radius p,( = ct/0,, where cs is the 
sound speed and fl, = eß7./m,c is the ion cyclotron 
frequency).24 We now give a simplified treatment of nonlin- 
ear m=\ dynamics in MMHD, extending our earlier 
results25 on this subject. In what follows, we neglect the 
collisional dissipation term in Ohm's law. (The small but 
finite resistivity in a high-temperature plasma causes irre- 
versible heating and reconnection, but is assumed to be sub- 
dominant to the other collisionless mechanisms that control 
the growth of the nonlinear instability.) 

A. Near-explosive tendency for thin islands 

From the incompressibility condition, we obtain 

^0A =       urr, d-d'=u0r,\      cos #' d-d' 
Jo ' Jo 

:«0r.t s'n #0' (33) 

where A is the width of the flow channel, ■&'= ir-■&= ± dQ 

designate the angular locations of the two tips of a thin m = 1 
island, v0 = ud(-&0), and u0 = ur(&' =0). As mentioned 
above, the presence of the pressure gradient term in Ohm's 
law causes a separation of small scales, i.e., A>A-~^, 
where A_, is the width of the current channel. 
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From flux conservation in the outer region, we have 
d\\ildt = urB^y Using Ohm's law (13) to match the inner 

limit of the outer region with the outer limit of the inner 
region, we obtain 

d,     cB *i   dp 

*» A     neB^Jd' (34) 

An equation for the pressure can be obtained in this case 
from the component of the momentum equation parallel to 
B, given by 

du 
pB.- + B.V(P+-pM. 

1 
= pBuxVxu. (35) 

Since inside the singular layer, the dominant component of u 
is ud(-&) along the sheet, the right-hand side of (35) vanishes 
to leading order. The first term on the left-hand side is much 
smaller than the second term, as the plasma satisfies the 
force-balance condition along the sheet. Thus, we obtain12,25 

(36) j&[P+2pu*lS°- 

Equation (36) can be shown12 to yield the outflow speed 
vQ = BitiJ{AiTnmi)

U2. Since 

= BP(rs)w/(2rs), we obtain23 
5*{=!«Ok/2 

v0 = {wl2rs)vk. (37) 

where vA^BP(rs)/(4immi)
i/2. From (23), it follows that 

u0 = dX0/dt=jdw/dt. Integrating Eq. (34) with respect to #, 
and making use of Eqs. (33) and (36), we obtain 

dX      2d.<x>e 

■X + 
<i>. 

■X2 (38) dt     rs sin #0 " ' 2ft,- sin #0 

where we define X^wl{2rs), and keep terms up to 0{X2) 
for X< 1. The angle #0 is determined by setting d(d0) = A, 
where 

w    I      w \ # 
d(&)= — -   - —-£ cos ■&} =w sin2 — (39) 

is the distance between the inner and outer branches of the 
separatrix. Thus, we obtain 

. 2#o    A 
sin   —- = —. 

From (33) and (37), we obtain, for thin islands,25 

sin #0s=(o)Am,-)l/2, 

where cjA^vA/rs. Integrating Eq. (38), we obtain 

X(0)exp(2ycr) 
X(t 

where 

i-[ro/(2rc)]X(0)[exP(2rcO-i]' 

(D'i 

7o: 
2Clj sin do 

(40) 

(41) 

(42) 

(43) 

and 

7 c = 
rs sin #0' (44) 

It is clear that the thin-island evolution equation (42) exhibits 
two phases. The first phase describes exponential growth in 
time, given by X(t)~X(0)exp(2yct), and dominated by 
electron inertia. In the second phase, the island growth ex- 
hibits a near-explosive tendency, since the expression on the 
right side of (42) has a finite-time singularity at 

t,. = - 
7o 

2yc     \2ycX(0) (45) 

We emphasize that the finite-time blowup suggested by (42) 
is merely a tendency, and is not realized in practice. This is 
because Eq. (42) is derived under the thin-island approxima- 
tion wl2rs< 1, which breaks down when the island size be- 
comes a significant fraction of the plasma radius. In the next 
section, we shall discuss how the island passes from the 
near-explosive phase to the decay phase. 

Equation (42) is more general than the thin-island de- 
scription given in Ref. 25. It reduces to the result of Ref. 25 
in the asymptotic limit 2yc(tc-t)>\, whereby we obtain 
the result that X(t) for thin islands tends to blow up as 
{tc-t) .As stated in Ref. 25, the contribution to the recon- 
nection velocity due to the electron inertia scales as 
uc~(de/A)ur. Since, in the presence of the electron pres- 
sure gradient term in Ohm's law, we have A~p,, the elec- 
tron inertia term makes a smaller contribution to the recon- 
nection velocity than the electron pressure gradient which 
eventually dominates the dynamics. 

In the absence of the electron pressure gradient term, we 
have &~Aj~de, and electron inertia essentially controls the 
reconnection dynamics. In this special case, our model pre- 
dicts that the thin island will tend to grow exponentially in 
time in the early nonlinear phase, which agrees with one of 
the findings of Ottaviani and Porcelli.19 However, Ref. 19 
also claims that electron inertia, by itself, can subsequently 
lead to near-explosive growth of islands, which is not what 
we find. As discussed in Ref. 19, the reduced equations with- 
out the electron pressure gradient term in Ohm's law admit 
the conservation of the canonical momentum ip-d2

eJ (where 
7==VV), convected by the flow. It can then be seen by 
simple scaling arguments19 that the shrinking of the singular 
layer width A and the growth of a near-singular current J is 
a consequence of the conservation of canonical momentum. 
We differ from Ref. 19, however, in its conclusion that this 
behavior leads to near-explosive growth in the island size. 
(In our case, the near-explosive growth is caused by electron 
pressure gradients, and not by electron inertia.) In the ab- 
sence of electron pressure, we expect that the current sheet 
will grow increasingly singular and rapidly slow down the 
reconnection process (in the same qualitative way as it does 
in RMHD) after a short-lived exponential phase. This is in- 
deed what is shown by the numerical results of Drake and 
Kleva,18 as well as by Aydemir.22 Furthermore, Drake and 
Kleva note that the rapidly shrinking current layer is unstable 
to   current-driven   instabilities   that   generate   a   form   of 
hyperresistivity.34"37 In the Appendix, we calculate some rel- 
evant scalings of island growth in the presence of hyperre- 
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sistivity, and compare them with numerical results. For two 
possible choices of hyperresistivity, we show that the island 
growth is either algebraic or exponential in time. 

In the presence of electron pressure gradients, the island 
exhibits near-explosive growth. Our conclusion, in this re- 
spect, differs from that of Zakharov et al.,24 who predict ex- 
ponential growth of the island using the four-field model 
equations. The discrepancy can be resolved by reconsidering 
Eq. (29) of Ref. 24, which can be written as dw/dt~wA. 
Zakharov et al. suggest that A is time independent, and 
hence w grows exponentially with time. In contrast, we show 
in Ref. 25 as well as here that A itself scales as w, leading to 
near-explosive growth in time. 

0.04 
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0.02 • 

0.01 ■ 

100 200 300 400 

B. Large-island dynamics 

The slowing down of the nearly explosive growth of the 
island occurs due to the reduction in the magnitude of B^ 

from the value B^   = BPw/(2rs).
25 This reduction can be 

calculated heuristically, using the relation 

(a) 

* r dr dr 
(46) 

r-S 

Expanding the right-hand term in (46), and keeping the first 
significant correction term in the expression for B^ , we 

obtain 

B*=\^-(rs-Z) = BP(rs)X(\-X). 

For large islands, Eq. (41) is then modified to 

» 0o     A 
sin 

w 4fl (1-X). 

(47) 

(48) 

Using (47) and (48), Eq. (38) can be written more generally 
as 

1/2 dX 

IT'' 
x\\-xyu+ 2d, 

X\ — {\-X) 
1/2 

(49) 

where r = wAr. We now define the nonlinear growth rate, 

d In X 
JN-- dr 

(50) 

Equation (49) is integrated with the initial condition 
X(0) = p,/(2r!) and the JET parameters cited in Refs. 16, 17, 
and 25. The nonlinear growth rate yN can then be computed 
according to (50). Figure 2 shows the time history of the 
island growth rate, from its early exponential and near- 
explosive growth, followed by the decay phase. This picture 
shows a strong qualitative resemblance to the numerical re- 
sults of Aydemir22 [Fig. 2(b)] based on the four-field system. 

V. COMPARISON WITH EXPERIMENTS 

Thanks to sophisticated diagnostic development over the 
last decade, much is now known and observable regarding 
sawtooth behavior in tokamaks. These observations and the 
enhanced database pose a substantial challenge for any theo- 

o u 
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FIG. 2. (a) The nonlinear growth rate for the island width predicted by the 
analytical model, (b) The nonlinear growth rate obtained numerically in Ref. 
22. The physical parameters and initial conditions for the numerical calcu- 
lation are somewhat different than that used for (a). 

retical model. In this section we compare the predictions of 
the present model with salient features of observations. 

A. Rapidity and onset of the sawtooth crash 

In the Introduction, we have discussed that the time scale 
of sawtooth crashes in present-day tokamaks such as JET 
and TFTR is one to two orders of magnitude faster than the 
prediction of the Kadomtsev model. A correct theory of saw- 
tooth crashes should account not only for this fast crash, but 
also for the time development of the growth rate, leading to 
the crash. The latter is often referred to as the "onset" or the 
"fast-trigger" problem,38,39 and the issue here is the mecha- 
nism by which a sudden transition occurs from the sawtooth 
ramp phase to the collapse phase. It is of some interest to 
note that the sudden onset of sawteeth has been a persistent 
feature of not just the data from present-day tokamaks, but 
earlier tokamaks as well. Jahns et al.40 point out this feature 
and attribute it to a transition from a linear growth phase, 
scaling as exp(yt/), to an even faster growth phase, scaling 
as exp(y4f

5). The constant y4 is related in Ref. 40 to the 
magnetic shear, and the time dependence of the process is 
ascribed to the gradual time evolution of the linear growth 
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FIG. 3. (a) The plasma displacement f predicted by the analytical model, (b) 
The displacement as interred from the peak soft-x-ray emissivity in the JET 
device reported in Ref. 16. 
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FIG. 4. Geometrical deformation of the island as the size of the island 
increases from (a)-(d). The shapes (c) and (d) are not physically realizable. 

vary over a wide range for current profiles that look globally 
rather similar (but may have local dissimilarities in the value 
of q' at the rational surface). 

It should be noted that the sudden onset to the near- 
explosive phase in the present model occurs from the thin- 
island phase of the dynamics, and therefore, does not require 
the presence of precursor islands. We point out that in Fig. 
2(a), we follow the time evolution of the island until 
£-0.6/-,. After this point, as is seen by inspection of Fig. 2, 
the nonlinear growth rate is very slow. Furthermore, as dis- 
cussed in the next section, the strong island deformation in- 
duces a rapid temperature relaxation that outpaces the current 
relaxation due to reconnection. 

rate due to the temporal change in the q profile. We now 
know, primarily due to the theoretical developments in the 
last five years, the mode becomes nonlinear rather quickly, at 
which point its growth in the RMHD model is algebraic in 
time, superseding the exp(-y4f

5) phase considered in Ref. 40. 
Figure 3(a) is a plot of the (logarithm of the) displace- 

ment f(=Xrv) versus time, obtained by integrating Eq. (49) 
with the initial condition X(0) = pjilr,). The slope of the 
curve in the near-explosive phase is approximately (20 
fi&)~\ which should be compared with the slope (25 /ns)~l 

of the JET data, taken from Ref. 16 and shown in Fig. 3(b). 
The JET data also suggests that the near-explosive phase 
lasts approximately 100 fis. The theoretical model predicts 
that this time scale should be of the order of 100/wA, but 
since o>A depends on the shear q' at the rational surface, the 
quantitative estimates may vary over a wide range (20-100 
/xs), depending on the value of q' at the rational surface for 
the m = 1, n = 1 mode. In fact, this is qualitatively consistent 
with the observation in TFTR4' that sawtooth crash times can 

B. Incomplete reconnection or the "q(0) problem" 

One of the outstanding problems of sawtooth research 
has been the experimental observation that q(0), the safety 
factor on axis, remains fixed at a value smaller than unity 
(-0.7-0.8) throughout the sawtooth cycle. This was first re- 
ported by Osborne et al42 in the small tokamakTOKAPOLE 
II, but appears not to have been widely noticed. Results from 
TEXTOR by Soltwisch et a/.,43 and since then in other tok- 
amaks as well, have brought this issue into sharp focus. 
These observations pose a major problem for theory, because 
the Kadomtsev model and its variants appear to lead to a 
complete relaxation of the temperature and the current pro- 
file inside the q= 1 surface, with q(0) rising above unity at 
the end of the crash. Lichtenberg et a/.44 have given a pos- 
sible mechanism for partial reconnection based on the sto- 
chastization of field lines caused by secondary island forma- 
tion. 

Based on the present model, we propose an alternative 
explanation. In Fig. 4, we show the inner and outer bounding 
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surfaces of the island as it grows in size. The equation of the 
outer surface, which is circular, is given by (23), whereas the 
inner surface is described by (24). Figures 4(a)-4(d) corre- 
spond to increasing values of w. We note the strong distor- 
tions from near-circularity in these plots. (In the mathemati- 
cal literature, the inner curve is referred to as the Limacon of 
Pascal, but we prefer to describe it as a "deformed cres- 
cent.") Distortions such as the ones in Figs. 4(a) and 4(b) 
are, in fact, seen in contour plots of the tomographically 
reconstructed x-ray emission (see, for instance, Fig. 4 of Ref. 
14). As the island size increases rapidly due to the effect of 
electron pressure gradient on the m-\ instability, the hot 
core shrinks. This is also illustrated in the electron- 
temperature isotherms measured during a sawtooth crash in 
TFTR by Nagayama and co-workers,45 described in a recent 
article by Callen et al46 (see Fig. 1 of Ref. 46). 

What mechanism sustains the sharp temperature differ- 
ence between the hot core and the island in the early stages 
of the island growth? It is the current sheet that lies all along 
the separatrix of the magnetic island described by Figs. 4(a)- 
4(b). That the sheet automatically sustains a steep tempera- 
ture jump ATe between the colder inside of the island and 
the outside, which comprises the hot core, can be easily seen 
from the pressure-balance condition JB^  Ic  ~   nV.T 

* tf ±    e 

~ n AT,/A. Once the current sheet is formed, it acts as a 
thermal barrier between the inside of the island and the hot 
core in the early stages. 

As the island grows near-explosively, the inner surface 
becomes a deformed crescent. However, the strong distor- 
tions depicted in Figs. 4(c) and 4(d), which correspond to 
£>0.6rt and involve unphysical cusps, merely reflect a ten- 
dency, and are not realized in practice. What actually occurs 
is that the current sheet is drastically weakened locally in the 
neighborhood of where the cusp tends to form. (It is easy to 
see that the direction of the current due to the cusp opposes 
the direction of the original current sheet.) The weakening, 
and eventual dissolution, of the current sheet in the inner 
edge of the island destroys the local force balance. Once the 
force balance is destroyed, nonequilibrium conditions pro- 
duce locally a perpendicular convection speed uL of the or- 
der of the sound speed, i.e., uL~cx~psfl:. The sharp tem- 
perature jump, AT,, can no longer be sustained, and the 
large convection velocity sets up a mixing process that be- 
gins at the boundary separating the hot core from the interior 
of the island, and penetrates rapidly into the island. On the 
other hand, the hot core shrinks, as its outer layers are peeled 
away, and the heat is redistributed within the island, which 
acts as a sink. The relevant time scales can be elucidated by 
considering heuristically a model temperature equation, 

Te-Teifat), and eliminate the last term by flux-surface av- 
eraging. Now, using the numbers in Ref. 25, we see that 

dT. 

dt 
- = -U.V7;+KX V^+KJ vfr,. (51) 

Of all the terms on the right of (51), the time scale associated 
with the last term is generally the shortest, because the par- 
allel heat conduction coefficient is several orders of magni- 
tude higher than the perpendicular heat conduction coeffi- 
cient. The large parallel heat conduction produces rapid 
equilibration of temperature on any given flux surface. 
Hence, we can take the temperature to be a flux function, i.e., 
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u.vr,~Mlf~f n.T^vir.-^r, (52) 

where we have taken K^ lO~7/-2wA, based on a thermal 
diffusivity of 1 m2/s.39 Equation (52) demonstrates that the 
mixing of temperature across the separatrix due to nonequi- 
librium convection occurs much faster than that due to per- 
pendicular heat conduction. It is important to recognize here 
that once the current sheet on the inner branch of the sepa- 
ratrix, which acts as the thermal barrier between the inside of 
the island and the hot core, is destroyed, the mixing caused 
by the strong temperature gradients ATe through the fissure 
in the thermal barrier can no longer be held back by the 
surfaces away from the separatrix (on which the current dis- 
tribution is smooth). Every layer of the hot core that is 
peeled away by this process brings the growing island in 
contact with another layer of a smaller hot core, and the 
temperature flattening between the different layers resembles 
a falling stack of dominos. The entire process occurs on time 
scales of 10-100 fis for tokamaks such as JET and TFTR. 
[Since the temperature relaxation in the core and the island is 
dominated by the mixing of the plasma by convection, the 
time for the mixing to be completed can be estimated 
roughly as Tm<r,/cv~rJ/(p,n,.)~100/fi,-~10 JJS.] 

By momentum conservation, the rapid outflow from the 
hot core into the island should cause a recoil of the hot core, 
and this can possibly account for the bulge that is seen in the 
fourth and fifth frames of the electron temperature isotherms 
in Fig. 1 of Ref. 46. 

With the heat escaping from the hot core, which cools 
down rapidly, the parallel pressure gradient near the X point 
is lost before the reconnection is completed. In other words, 
the parallel pressure gradient that drives the near-explosive 
growth of a large island ends up depleting itself, because the 
current sheet on the inner separatrix, which acts as the ther- 
mal barrier between the core and the island, is destroyed, and 
the temperature equilibrates rapidly. Thus, in the scenario 
described above, the temperature relaxation occurs much 
faster than the current relaxation, with the central q value 
remaining below unity. 

A natural question is what sustains the temperature gra- 
dient between the sawtooth region and the plasma just out- 
side the sawtooth region. It is important to remember that 
while the inner surface of the island deforms due to the rapid 
growth in the island size, the outer surface remains circular, 
and still carries a current sheet that decays in time slowly. 
The heat pulse that "spills over" this outer thermal barrier 
from a sawtooth relaxation process is a weaker dynamical 
process than that caused by the nonequilibrium condition 
generated by the local dissolution of the current sheet on the 
inner separatrix. 

It is interesting to consider why the numerical simulation 
of Aydemir22 based on the four-field model, which provided 
the stimulus for the present work, should exhibit complete 
reconnection. We recall that a significant distinction between 
MMHD and the four-field model is that the former includes 
electron temperature gradients, while the latter does not. It is. 
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therefore, not surprising that while it captures the near- 
explosive growth of the instability, it cannot describe the 
self-consistent evolution of the temperature.47,4* On the other 
hand, the self-consistent temperature evolution is included in 
the resistive MHD simulations of Aydemir et al.w In the 
simulations of Ref. 39 (which do not include the electron 
pressure gradient term in Ohm's law), the temperature relax- 
ation seems to occur slightly ahead of the current relaxation, 
despite the fact that the Lundquist number for the simulation 
is about two orders of magnitude smaller than for the experi- 
ments. (This is clear form a close comparison of Figs. 8 and 
10 of Ref. 39.) This suggests that current relaxation in a real 
experiment should be lagging behind temperature relaxation 
in a more pronounced manner than presently seen in the 
resistive MHD simulations, because the Lundquist numbers 
used in the simulations, due to numerical constraints, are too 
low and overestimate the rate of reconnection. 

In view of the developments presented here, we suggest 
that if existing MHD simulations are modified by including 
electron pressure gradient terms in Ohm's law, and compen- 
sate for the fact that realizable Lundquist numbers for simu- 
lations overestimate the rate of reconnection, it may be pos- 
sible to account for the long-standing mystery of why 
temperature relaxation in experiments occur while magnetic 
reconnection still remains incomplete. We are led to this sug- 
gestion because electron pressure gradients, by inducing 
near-explosive growth in the island size, should cause the 
inner surface to become a deformed crescent much more 
rapidly than they do in standard resistive MHD simulations. 
This, in turn, will set in motion the rapid thermal equilibra- 
tion between the hot core and the island, well before the 
reconnection process is completed. In other words, tempera- 
ture relaxation will occur well before complete current relax- 
ation can change q{0). 

The picture presented above is quite different from the 
mechanism proposed by Kolesnichenko et a/.49 who have 
given an explanation of the q(0) problem based on a scenario 
of secondary reconnection following the reconnection phase 
described by Kadomtsev. In this mechanism, the final state 
does have <y(0) less than unity, but it is preceded by an in- 
termediate stage [Figs. 2(b) and 2(c) of Ref. 49] in which 
q(0) rises to a value greater than unity. We note that the 
evolution of the temperature profile is not considered in Ref. 
49. Though the scenario of secondary reconnection is plau- 
sible in principle, it may be of academic interest in practice 
because the rapid temperature relaxation that is observed to 
end a sawtooth cycle, is likely to supersede the secondary 
reconnection process. 

VI. SUMMARY AND DISCUSSIONS 

In this paper, we have developed a theory of the nonlin- 
ear collisionless w= 1 kink-tearing instability, including the 
effects of electron inertia and electron pressure gradient. 
Three dynamical phases are identified in the growth and de- 
cay of m= 1 islands. Due to the effect of electron inertia, the 
mode grows exponentially with time in the early stage of its 
nonlinear dynamics. However, due to the effect of the paral- 
lel electron pressure gradient, which broadens the current 
layer to a width of the order of the ion-sound Larmor radius, 

this exponential phase is followed by a near-explosive phase 
in which the island tends to blow up as (/,.-?)"'. This near- 
explosive tendency is arrested as the island grows to a size of 
the order of the sawtooth region, and is followed by a rapid 
decay phase. The master equation (49) describes all three 
phases. 

Viewed in its entirety, the present theoretical model pro- 
vides an explanation of the salient features of sawtooth os- 
cillations in tokamaks. The model accounts for both the ra- 
pidity of the sawtooth crash and its sudden onset, and 
detailed comparison with data (Sec. V) from JET shows sat- 
isfactory agreement with the observed time scales. Based on 
considerations of the geometrical deformations that occur in 
the island separatrix as the island grows near-explosively to 
large size, we have offered a qualitative mechanism for the 
shrinking of the hot core and the temperature equilibration 
between the hot core and the colder island. This temperature 
equilibration occurs rapidly, within a time scale of 10-100 
/is, and well before the reconnection process can be com- 
pleted. Thus, <7(0) remains unaffected during the sawtooth 
cycle. 

These results have significant implications, not only for 
tokamaks, but also for astrophysical plasma phenomena, 
such as solar flares. Observations indicate three distinct 
phases of energy release from a solar flare: a growth phase 
characterized by ultraviolet (UV) and soft x-ray emission, a 
sudden impulsive phase characterized by UV and hard x 
rays, and a decay phase dominated by soft x rays.50 It is well 
known that the x-ray emissions are produced by accelerated 
energetic particles, and that there is a substantial amount of 
modeling involved in relating these emissions to the signa- 
tures of MHD processes, such as the electric field produced 
during reconnection. The connection with the hard x-ray 
emission, which is dominantly a signature of prompt, high- 
energy electrons is perhaps the least difficult to establish, and 
we assume that this emission reflects qualitatively the time 
dependence of the electric field. We then suggest that colli- 
sionless magnetic reconnection, influenced by electron pres- 
sure gradients, is a possible candidate for the time develop- 
ment of the hard x-ray emission during a flare. This will be 
the subject of a future publication. 
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APPENDIX: EFFECT OF HYPERRESISTIVITY 

In   this   appendix,   we   shall   discuss   the   effect   of 
hyperresistivity34^7 on the nonlinear evolution of the m= 1 
instability under conditions when it is the dominant term in 
the generalized Ohm's law. We then write 

.4 
c— = ßi.d;x/lj=ßed

2
evl^^ 

Aß, 

*l (Al 
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where /xe is a constant, T^=rA
sl(fjLed]) is a characteristic 

time scale, and A^ is the singular layer width in the presence 
of hyperresistivity. Using Eqs. (33) (with A replaced by A^) 
and (37), we obtain 

dX     1 

^=2(sin#o) 

^3/4 
-3/4 (A2) 

where TC=7^
/4
7^

/4
 is the characteristic reconnection time, in- 

troduced in Ref. 51. Integrating Eq. (A2), we obtain 

X = 
1 

2I/2 sin3 T?n 
(A3) 

which is faster than nonlinear resistive growth, but still alge- 
braic in time. 

We now consider the case in which fie itself is propor- 
tional to J, as in Ref. 18. In this case, Eq. (Al) changes to 

dif/ 

It = d2
eV±-ße-VxJ~d2

e 

ßul Aß,    d, 

~ß 1/2 

A 

d   >5 

n        \-VLI    (4l7"P) 

J 

A 
f 

(Aß,)2 

{Airp)m- 

1/2 

where ß=ßmilm€. Then, we obtain 

5/6 

x, 
dt \rj     \ sin -d. 

(A4) 

(A5) 

which yields exponential growth of the island, given by 

X=X(0)exp(2yc.f), (A6) 

where 

a,    o)4   ' 
7c = ß1 

r, sin ■&, 
(A7) 

is the characteristic time scale defined by Eq. (7) of Ref. 18. 
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The problem of forced reconnection in static and rotating plasmas due to a sinusoidal boundary 
perturbation is revisited. The primary focus of this paper is on inner region dynamics, including the 
effects of resistivity as well as viscosity. It is shown that for high-Lundquist-number plasmas, the 
use of the "constant-^" approximation in the linear and nonlinear regimes of forced reconnection 
is not justified. The linear and nonlinear dynamics in the inner region are charactenzed by the 
persistence of current sheets. Explicit analytical solutions for the time dependence of the 
reconnected flux and current sheet density are given, and tested by numerical simulations. These 
results differ qualitatively from earlier analytical results on forced reconnection in static plasmas 
FT S Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985)] (except in a very restricted range of 
parameters) as well as rotating plasmas [R. Fitzpatrick and T. C. Hender, Phys. Fluids B 3 644 
(1991)]. Some qualitative implications for laboratory and space plasmas are discussed. © 1990 
American Institute of Physics. [S1070-664X(96)02306-3] 

I. INTRODUCTION 

Magnetic reconnection can be either "free" or "forced." 
Free reconnection is caused by the spontaneous occurrence 
of a nonideal instability, whereas forced reconnection is 
caused by externally imposed boundary perturbations on a 
stable equilibrium. 

For many systems of physical interest, both types of re- 
connection can coexist. To differentiate between them, we 
need to consider typical time scales. Let us consider an ex- 
ternal perturbation, characterized by a time scale T0=ü/VQ, 

where a is the system size and V0 is the characteristic fluid 
velocity involving the boundary perturbation. The magnetic 
field in the system responds to the external perturbation on 
an Alfven time scale rA=a/VA, where VA is the character- 
istic Alfven speed. The relevant hierarchy of time scales for 
forced reconnection is TA<ZT0<TR , where TR is the character- 
istic resistive diffusion time. The inequality TA<T0 allows us 
to assume that the plasma in the "outer region," which obeys 
the ideal magnetohydrodynamic (MHD) equations, is quasi- 
static. The presence of a small but finite resistivity causes 
reconnection in the "inner region" on a time scale TS that is 
much faster than the diffusion time scale TR . [In resistive 
MHD theory, rs is equal to JZ^^AM'

3
 

in a linear non; 
constant- ip regime,1 to TCL 

regime 
-T^-IR

5
 

in a nnear constant-^ 
2 and to TSP=(TATR)

1/2
 in a nonlinear non-constant- ip 

regime.3-5] Hence, we obtain TK<TS<TR. Since r0 and rs 

are both bounded by rA and rR, we should consider the rela- 
tive magnitudes of T0 and rs. If reconnection occurs when 
TS<T0, it does so because of the free energy already stored in 
the equilibrium, and is hence "free." On the other hand, if 
TS>T0, reconnection is "forced." In this paper, we focus on 
forced reconnection, for which the relevant hierarchy of time 
scales is Tk<T0-^Ts<TR. 

Hahm and Kulsrud (hereafter HK)6 obtained linear as 
well as nonlinear analytical solutions for a paradigmatic 
model of forced reconnection in static plasmas, proposed by 
Taylor. Wang and Bhattacharjee7 (hereafter WB) demon- 

strated that the nonlinear treatment of HK is valid only in a 
very restricted parameter range for high-Lundquist-number 
plasmas because it ignored the persistence of current sheets 
in a "non-constant-ip" regime.8'9 Fitzpatrick and Hender10 

(hereafter FH) extended HKs results by including the effects 
of rotation and viscosity in cylindrical geometry, but did not 
address the issue of persistence of current sheets in a nonlin- 
ear, non-constant- tp regime. Later, Fitzpatrick et al. did 
touch upon this issue briefly, but maintained that the recon- 
nection layer probably "remains constant- tp throughout its 
linear (and subsequent nonlinear) phase." 

The main goal of this paper is to demonstrate that the 
use of the constant- tp approximation in the linear and nonlin- 
ear regimes of forced reconnection is incorrect, both with 
and without the effect of plasma rotation and viscosity. In the 
regime of non-constant-^ regime, current sheets do persist, 
and the time evolution of the island during forced reconnec- 
tion is qualitatively different than that obtained from the 
standard Rutherford theory12 and its generalizations. -1 ' 

The following is a layout of this paper. In Sec. II, we 
introduce the basic model and dynamical equations. In Sec. 
Ill, we summarize the analytical results obtained in Refs. 5 
and 7 for a stationary plasma and give numerical results from 
a two-dimensional (2-D) resistive MHD simulation that cor- 
roborate the analytical scalings. In the following sections, we 
present analytical and numerical results on forced reconnec- 
tion in a resistive and viscous stationary plasma (Sec. IV), as 
well as a resistive and viscous rotating plasma (Sec. V). In 
all of these cases, we demonstrate the persistence of a non- 
linear non-constant- ip regime with a current sheet. We con- 
clude in Sec. VI with qualitative discussions on the implica- 
tions of our results. 

II. MODEL AND EQUATIONS 

We use a Cartesian coordinate system. For configura- 
tions with translation symmetry along z, we represent the 
magnetic field B as 
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B=zxV^+fizz, (1) 

where ^is a flux function and Bz is constant. An incompress- 
ible flow field v with the same symmetry can also be repre- 
sented as 

(2) V=ZXVQ!>, 

where <ß is a streamfunction and vz=0. The incompressible 
MHD equations for the two dependent variables, \p and <f>, 
can then be written (in cgs units) as 

-2 

(3) 
dip TJC* -+(<^)= — vv. 

du) 1 v 

dt Cp   r    v     p (4) 

where rj is the resistivity, v is the viscosity, c is the speed of 
light, 7z = (c/4ir)VV is the longitudinal (z component of 
the) current density, w=V2(£ is the z component of the vor- 
ticity, p is the (constant) density of the plasma, and (f,g) 
=z-V/xVg. The initial static equilibrium is given by 

fto = aBo ln[cosh(jr/a)], (5) 
where B0 and a are constants. 

We cast Eqs. (3), (4), and (5) in dimensionless form by 
redefining B/B0->B, x/a^x, t/rA-+t, iff->$B0a, <jy^<f>IVAa, 
<o-><ua/VA, J->4TraJ/(cß0), where rA=a/VA and 
VA=B0/(4Trp)m is the Alfven speed. The dimensionless 
equations are 

<¥ 1     , 

do 1 
— + (cf>,co) = (t(,,Jz)+-V2a), 

iAo = ln(cosh x), 

(6) 

(7) 

(8) 

where S^TR/TA is the Lundquist number, with 
TÄ = 4ira Irjc , and R~TJ TA is the Reynolds number, with 
T„^pa2/v. 

For the numerical results discussed below, we solve Eqs. 
(6) and (7) simultaneously using a Runge-Kutta finite- 
differencing scheme that has fourth-order accuracy in time 
and second-order accuracy in space. Exploiting the symme- 
try of the initial conditions, we carry out the numerical simu- 
lation in a quadrant of the physical domain in the x-y plane, 
with XB (0,1) and y E(0,2). At the boundary x=0 and y=0, 
we impose symmetric boundary conditions. We assume that 
the boundary v=2 is open and impose the conditions <?&>/ 
<?f=0 and ^ = -yVf In order to reduce the amplitude 
of waves reflected from the boundary, we apply a damping 
term at the outermost grid points. We use a three-point dif- 
ferencing method to calculate the first derivative at the 
boundary, ensuring second-order spatial accuracy. To reduce 
numerical error and computer time, we employ a nonuniform 
mesh. Nonuniform meshing enables us to increase the spatial 
resolution near the separatrix (where the current sheet devel- 
ops). 

At the lateral boundary x = \, the externally driven per- 
turbation is turned on at t = 0 and attains the asymptotic value 

£c(*=l) = f0cos(*;y-n0, (9) 

in a short period t0 (typically r0=l), where $,«1 js a con- 
stant and a is the oscillation frequency of the applied per 
furbation. In Taylor's model, to be discussed next, we set 
i L — U. 

III. FORCED RECONNECTION IN TAYLOR'S MODEL 

Taylor's model, first considered by HK, deals with 
forced reconnection in a static plasma. This model has al- 
ready been treated analytically in Refs. 6 and 7, and we 
review the results here briefly in order to facilitate compari- 
son with the numerical results discussed below. 

A. The outer region 

For |*| =sl, we approximate the initial equilibrium (8) as 

^o = *2/2. (10) 

The equation for the perturbed boundary is 

*=±(l+£o cos ky), (n) 

where we have redefined ft/a-fi, and ka-*k. We write the 
perturbed flux function in the form 

ij/{x,y,t) = ij/(x,t)cos ky, (12) 
where <//(l,/) = £0. We assume that the outer region is quasi- 
static and obeys the ideal MHD equations. Equation (6) then 
reduces to 

d24i 

~dx' -£
2^=0, (13) 

which has the solution6 

7/     N    7/^ N/     , sinhl&jc ip(x,t)=i/,(0,t) cosh kx !— 
\ tanh k + f< 

sinh|£*| 

sinh k 
(14) 

For forced reconnection, at f = 0, we have ^(0,:)=0, and the 
outer region solution exhibits a jump discontinuity atx=0. It 
is clear from these simple considerations that the linear dy- 
namics of forced reconnection begins from a non-constant-^ 
regime in which A' = [^'(0 + ,r)-^'(0-,0]/^(0,0-»»t 

where the prime (over ij,) denotes the derivative with respect 
to x. To determine if the non-constant-<A regime persists for 
later times, we need to consider the time dependence of 
^(0,0, obtained from the inner region solution. 

B. The inner region 

The linear analytical solution for the inner region is ob- 
tained by solving the resistive MHD equations.6'7 In the lin- 
ear ideal MHD phase, valid for 0</=si, HK obtain the exact 
solution, 

h(o,ty- 4*2go 
77 sinh k (15) 

In the linear resistive phase, valid for \^t<Sm, the recon- 
nected flux grows in time as6 

fa(0,t) = 
2k2£0     __ 

77 sinh k \ TSP 
(16) 
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where rSP=51/2. The time development of the current sheet 
during the linear resistive phase can also be calculated by the 
same method and shows that the current sheet growth in this 
phase is still given by the ideal result (15). Hence, the 
"ideal" current sheet persists in the linear regime of forced 
reconnection.6'7 

The transition to the nonlinear stage occurs when 

w     4k2 

AL~   IT 

so 

ir sinh k 

1/2/  t \ 2 

(17) 

where TC = 5
1/4

 and &L=tT/(2kt) is the linear current chan- 
nel width (which is an upper bound for the reconnection 
layer width). Hence, the transition to the nonlinear non- 
constant-^ regime occurs, superseding the linear constant ifj 
regime described by HK, at f~Tc/£Ö/4 for modes with k~\. 
However, as discussed by WB, in high-Lundquist-number 
plasmas CS2=106), for very short-wavelength modes (k>\0), 
or very long-wavelength modes (k<0.l), the transition oc- 
curs in a constant-^regime. HK's analysis is valid, and the 
transition occurs when 

^iTTsmhkyi* 
(18) 

In the nonlinear non-constant-^ regime with a current 
sheet, a variant of the Sweet-Parker model holds.7"9 The 
nonlinear reconnected flux is given by7'8 

,3/2 

(19) ^^^Yh 
The nonlinear current sheet saturates with an amplitude, 

C. Numerical results 

(20) 

We have tested the analytical results discussed above 
with the 2-D, incompressible MHD code described in Sec. II. 
We have run simulations with Lundquist numbers (a) S=105 

and (b) S = 104 with &=0.01 ^ and k = ir/2. According to 
analytical theory, relevant time scales for these two cases are 
(a) TC=18, TL=46; and (b) TC = 10, rt=21. Figures 1(a) and 
1(b) show the time evolution of the current sheet amplitude 
at x=0 for the cases (a) and (b), respectively. In the linear 
regime, the analytical result predicts that the current sheet 
amplitude grows as JL(0,t) = J0t, where 70=0.024 for the 
parameters used in the simulation. In the nonlinear stage, the 
total saturated current sheet amplitude, Jz0 + JL + JN, is ana- 
lytically predicted to be 2.03 for case (a) and 1.43 for case 
(b), respectively. We see that the simulation results (solid 
lines) are reproduced well by the curve Jz0 + J0{t-t0) in the 
linear phase (dot-dashed line). (Here the offset f0 is approxi- 
mately the "switch-on" time required by the perturbation to 
reach the maximum value £0.) The numerical simulation 
finds that the multiplicative factor J0 and the saturated value 
of the current sheet are, respectively, 0.036 and 2.5 for case 
(a) and 0.028 and 1.46 for case (b), in reasonably good 
agreement with analytical predictions. The maximum ampli- 
tude of the current sheet increases with the Lundquist num- 

30.0 

FIG. 1. The time evolution of current sheets. The solid lines represent nu- 
merical simulation results. The dashed lines are linear analytic predictions 
for §,=0.01 ,/ir, k = ir/2, and Lundquist numbers (a) 5=104, (b) 5 = 105. 

ber, qualitatively consistent with the analytical scalings. In 
Fig. 2, we show a typical three-dimensional picture of the 
current sheet, taken at f=50 for case (a). 

IV. THE EFFECT OF VISCOSITY 

The quasistatic outer region solution (14) is unaffected 
by the presence of viscosity. We consider the inner region 
solution, modified by viscosity. 

A. The linear regime 

On the ideal time scale 0<r*£l, the exact ideal solution 
(8) continues to hold. The linear nonideal layer equations are 

<?<A        -    1  - 

d~4>"       .     l . 

(21a) 

(21b) 

We define dhldt=-k<j>, and take Laplace transforms of the 
time-dependent variables to write Eqs. (21) in the form 

s{V + xH) = S-W', (22a) 

s2H" = k2xV" + sR-]H"", (22b) 

where 

1 -2 

FIG. 2. A typical nonlinear current sheet in Taylor's model (at ; = 50) for 
case (a) of Fig. 1. 
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VW -/■ Jo 
dt e~s'i//(x,t) 

and 

H(x) dt e~s'h(x,t). 

(23a) 

(23b) 

There are two spatial scales in the inner region: the flow 
channel width that scales as ev=R~ m and the current chan- 
nel width that scales as e=S~m. We now consider two lim- 
iting cases. 

(i) e>ev (R>S) 

Near the neutral line x=0, we have sV-S'^", which 
motivates the ordering s~ e~S~lß. We define the variables6 

(is*s/e, 0=xle, Z=¥", and T^eH. Ignoring the viscous 
term, we write Eqs. (22) in the form 

Z=/i(¥+<?r), 

k2e k2e 

In the phase t< TL or /U.=STL> 1, we obtain 

Za^O)   1 + 
k2e2'-2 

P 

(24a) 

(24b) 

(25) 

We now match asymptotically the solution (25) to the outer 
solution (14). We note that 

lim 
dW 

7x~ 
_ r-    d2V _ l  r 

>r   Jo   X dx2 ~ e Jc 
d0Z=——V(O) 

and 

lim 
dV 

dx 
Ho     *¥(0) 

outer 5 sinh k    tanh & 

Equating (26a) and (26b), we obtain 

4        Zok2 

¥(0)3S 
7T J3

TL sinh Jfc' 

(26a) 

(26b) 

(27) 

Taking the inverse Laplace transform of (27) and (25), we 
obtain, respectively, (16) for the reconnected flux, and (15) 
for the time evolution of the current sheet. 

In the region d~evle<\, the velocity field has a fine 
spatial structure. Since this fine structure does not have a 
significant effect on the reconnected flux or the current sheet, 
we do not consider it further. 

(ii) e^>e(S>R) 

We introduce a "middle" region scale, 

eD^(S/R)y6e (28) 

larger than inner region scale e. In the middle region, the 
plasma is "viscoideal," i.e., the flux remains "frozen in" but 
the flow is damped by viscosity. We define the variables 

PD
1 se2

D/e
i = sTLD = s~Sm/Ru3,'d=x/eD,  Z^V",  and  T 

= ^jH, and rewrite Eqs. (22) as 

z=txD(v+er), 
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(29a) 

r-afö*-+a 
\PD PD   ' (29b) 

where a*S/R*>\. In the limit PD>\{t<TLD), Eqs. (29) 
yield to leading order, 

y+er=o. 

F1"^   -nnrr 

PD 

(30a) 

(30b) 

We note that the sheet current, proportional to ¥", is inside 
the channel x~-e<eD and drops out of the middle region 
For 05*0, Eq. (30b) has the solution 

r"s=r0 exp(-yJfiD/a0), (31) 

where T0 is a constant. From Eq. (30a), we obtain 

zs-[2r' + 0r"]. 

Consequently, Eq. (31) yields 

Z = T0 exp(-V/iD/a0)  2\  
Mo 

(32) 

(33) 

Since 

Z(0-,O) = yuD^(0^O) = /uD^| —|=2 
ßD 

r„, 

we obtain 

r0= 
fifV{eleD) 

2am       ■ 

From Eq. (26a), it follows that 

^flf U(0) + *'(0) — = ¥(0)( 1 + ^ 
\
€

D! eD 4k 

(34) 

(35) 

(36) 

Asymptotic matching between the inner, middle, and outer 
regions requires that 

lim 
dV 

dx 
— lim- 

outer    JT—>=> 

dV 

dx 

00     d2^r 

i      dx1 (37) 
middle 

We can write the right-hand side of Eq. (37) as 

€
D Jo 2eD 

2e, 4k 
(38) 

Using Eqs.  (26a),  (26b),  (36), and (37), we obtain for 

8   t0k
2       1 

¥(0)s 7rsinhic^p72' (39) 

where ^^(Vr/15 rLD = (Tv/TA)
m5amTL. The inverse 

Laplace transform of Eq. (39) yields 

32£0*
2      I  t \ia 

fc0;)3 .J°. —. . 
157TJ/Z sinh k \ TLVJ (40) 
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The current sheet amplitude grows algebraically in time ac- 
cording to the equation 

16f0*
2alfl Rm  ,„ 

B. The nonlinear regime 

As in Sec. Ill B, we can demonstrate using Eqs. (40) and 
(41) that the transition to the nonlinear non-constant-^ re- 
gime occurs for t<rLD. It can be shown that 

w 

Ä7 H^Hfi^sinh* 
-1/2 

TcD 

11/4 

(42) 

where T:0S^
!I
^'«TLD , which implies that the transition 

to the nonlinear regime occurs when ^miTcD<t for k~\. 
The constant-(A regime is valid either for the short- 
wavelength modes k>30, or the long-wavelength modes 
k<Q.\. 

Following Refs. 7-9, the nonlinear reconnected flux can 
be shown to be 

M0,t)=vl 
ki ■o 

sinh k 

3/2 

TSPD 
(43) 

where TSPD = (1 + a) 1/4
TSP . We note that Eq. (43) is similar 

to Eq. (19), except for the replacement of TSP by TSPD . The 
saturated current sheet amplitude is given by 

JN(0,t) = S2 
sinh k 

3/2 
r-1/2 

1 1/4 

a+l (44) 

V. THE EFFECT OF ROTATION 

Forced reconnection in a rotating viscous plasma has 
been considered in detail by FH with a view to applying the 
theory to tokamaks. In such an application, the neutral line in 
equilibrium (8) corresponds qualitatively to a resonant (ratio- 
nal) surface in a cylindrical tokamak. If the plasma has a 
(constant) flow velocity V0y at the neutral line, and the os- 
cillation frequency of the applied perturbation is O0, then the 
Doppler-shifted frequency is Q,=Q,0~kVQ. If H=0, then a 
Galilean transformation yields Taylor's model to which the 
considerations of Sees. Ill and IV apply. On the other hand, 
if £1^0, Galilean transformation to a frame moving with a 
velocity V0y yields a perturbed boundary, 

x=±[l + f0 cos(ky-Clt)], (45) 

considered by FH. It is assumed that fl<\. In other words, 
the Doppler-shifted frequency is assumed to be much smaller 
than the characteristic inverse Alfven time. This permits us to 
assume that the plasma in the outer ideal region moves with 
the boundary. The perturbed flux at the boundary can be 
written as 

<kl,y,t)=<kU)cos(ky-Q.t) 

= £0(
cos tit cos ky + sin fir sin ky). (46) 

The linearized ideal solution in the outer region can be writ- 
ten as 

^(x,y,t)=i//c(x,t)cos ky+ij/s(x,t)sm ky, (47) 

subject to the boundary conditions 

<Äc(U) = £o cos Of,    ^(l,f) = £0 sinflr. (48) 

A. The outer region 

By Eqs. (47) and (48), the outer ideal solutions for H«l 
are 

ij>c(x,t) = ijfc(0,t) [coshkx- 
sinh|Ä:;<: 

tanh k 

sinh|Ä:;c| 
H ■  -   -    £o cos tit, sinh k (49a) 

<j/s(x,t)=ij/s(0,t)\coskx 
sinh|£;t 

tanh k 

sinh|£;t| 
H . ■   ,    £o sin tit. sinh k    u (49b) 

Clearly, there is a phase shift at x=0, as the island attempts 
to catch up with the boundary perturbation. The island ve- 
locity at x=0, caused by the boundary rotation, can be de- 
termined from 

i/f(x-*0,y,t)= ij/c(0,t)cos ky+ #(0,f)sin ky. 

= V<Äc
2(0,/) + #2(0,f)cos[Ä:v - 0(f)] 

= &{0,t)cos[ky--&(t)l (50) 

where ^(0,0 =  V#(0,0 +#(0,r),#(0 = tan"'[^(0,0/ 
&(0,r)],and 

d-»(t) 
V = w    kdt (51) 

B. The linear phase 

We can solve the linearized MHD equations (21) for the 
inner region separately for the cosine and sine components. 
Following the steps in Sec. IV, for Q.t<D,rLD< 1, we obtain 

ti 8   ^k2     n 
¥,(0)3-¥f(0)s 

TT sinh k r^ys i/2„9/2' 

which gives 

32£0*
2 

^^ 15^ sinh* TLV 

5/2 

(52) 

and 

W0,l)SyfltWO,(). (53) 

Therefore, by Eqs. (50) and (51), we obtain for Clt<\, 

&(x->0,y,t)= ],c(0,t)coslky- j Clt 

and 

V = 
2Ü 

Tie' 

(54) 

(55) 
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Equation (55) shows that the island is dragged along by the 
rotating boundary. 

C. The nonlinear phase 

To study the transition to the nonlinear regime, we begin 
from the linear phase with flt<ClTLD< 1, i.e., 

1   _Rm 

T
LD       J (56) 

which is identical to Eq. (39) of Ref. 11, where it is claimed 
to be a criterion for the linear layer to be constant iff. This 
claim is clearly contradicted by the results presented here. 
Furthermore, as shown by Eq. (42), the system makes a tran- 
sition to a nonlinear non-constant-^regime for t<rLD. Al- 
ternatively, we can arrive at the same conclusion by noting 
that roughly at the transition time TCD<TLD, we have 

157T5/2 

A'aSl6F(5M/?2/5)5/11>1' 

In the nonlinear phase, following the procedure that 
yields Eqs. (19) and (20) [or Eqs. (43) and (44)], in the frame 
moving with the current sheet, we obtain 

dij/N(0,t)      VI     _ 
-^r-^^.ou^-o,,)]^. 

From Eqs. (49), assuming <Ä/f0<ll, we obtain 

B y.outerv'*'    *",t)=£ —   —— . 
sinh k 

Then, in the laboratory frame, we have 

dM0,y,t)      V2   /  ££0 \3/2 

dt     -^IsirÄTj   cos^-no. 

Therefore, the oscillatory part of if/N(0,y,t) is 

(58) 

(59) 

(60) 

9.0-10"4 
(a) Reconnected Flux 

0 500 iooo 
(b) Current Density 

FIG. 3. The nonlinear time evolution of (a) reconnected flux and (b) current 
density in a viscous plasma driven by a rotating boundary perturbation. The 
parameters are k = ir/2, £,=0.05Vir. S=105, Ä = 105, and n=10"27r. 
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f^nm ? tyPJCal "0nlinear CUrrent Sheet in a viscous and rotati«g Plasma (at t-100) for the parameters of Fig. 3. 

^osc(o,,,0s^f^)3/2Liz!!^z^)l 
rSPD \ sinh k Q, 

(57)       The nonlinear current sheet is given by 
(61) 

JN(Q,y,t)sVl Ho 3/2 '1/2 

,smhk)     (i+a)U4Cos(ky-nt).   (62) 

D. Numerical results 

In Figs. 3(a) and 3(b), we plot the reconnected flux and 
the current sheet amplitude,  for the parameters £ = TT/2, 
£o=5V7TX10-3, S = 105, R = W

5
, and fl= TO" TT. For these 
osclmax = 1-2 X   10   4, which 

2.4xi0_3in 

parameters, Eq. (61) yields | j,N^lim .._ 
should be compared with the numerical value „..-,„ xu 

Fig. 3(a). For the chosen set of parameters, Eq. (62) yields 
l-Av.osclmax s 0-35, which should be compared with the nu- 
merical value -0.4 in Fig. 3(b). In Fig. 4, we show a three- 
dimensional plot of a current sheet during the time evolution 
of the system. The current sheet is locked to the boundary 
perturbation in this case. 

VI. CONCLUSIONS 

The main goal of this paper has been to elucidate, by 
analysis and numerical simulation, the role of current sheets 
m the dynamics of forced reconnection in viscous plasmas 
with or without rotation. The persistence of these current 
sheets invalidates the constant-^ approximation in the linear 
as well as the nonlinear regimes. For magnetotail or solar 
coronal plasmas driven by the solar wind, these conclusions 
imply the persistence of current sheet structures, even if the 
driving electric field has a moving component. These results 
also suggest that previous analyses10'11 must be reconsidered 
in so far as the problem of locked modes in toroidal plasmas 
is concerned. This will be the subject of a separate publica- 
tion. 
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The problem of mode locking due to forced magnetic reconnection in rotating cylindrical plasmas 
is revisited. Forced reconnection is characterized by very large values of the parameter A', which 
makes the constant-;/' approximation generally inapplicable in the linear and early nonlinear 
regimes. The nonlinear dynamics of rotating non-constant-^ islands is distinguished by the 
persistence of current sheets spanning Y points. Mode locking due to a suddenly imposed error field 
is discussed. Temporal dynamics and locking thresholds that differ significantly from the predictions 
of the constant-^ theory [R. Fitzpatrick and T. C. Hender, Phys. Fluids B 3, 644 (1991)] are 
obtained. The predictions of the present theory are compared with experimental tokamak obser- 
vations.   © 1997 American Institute of Physics. [S1070-664X(97)01502-4] 

I. INTRODUCTION 

Mode locking has been observed in tokamaks as well as 
reversed-field pinches.1-10 Locked modes caused by field er- 
rors can be very damaging to device operation. After these 
modes lock to the error field, they can grow further to reduce 
energy confinement, inhibit high-confinement mode (H- 
mode) operation, or even cause disruptions. 

Resonant field errors can drive magnetic reconnection in 
a resistively stable plasma. A simple but illuminating model 
for this phenomenon was proposed by Taylor for static plas- 
mas. Taylor's model was first presented and treated analyti- 
cally by Hahm and Kulsrud" (hereafter HK) and subse- 
quently by Wang and Bhattacharjee12 (hereafter WB). Since 
the parameter A' is generally very large for forced reconnec- 
tion, WB emphasized that the linear as well as the nonlinear 
island dynamics does not obey the constant- ift approximation 
in most cases of physical interest. As discussed by Park 
et al.n and Waelbroeck,14 the nonlinear dynamics of forced 
reconnection is characterized by the persistence of quasi- 
ideal current sheets spanning Y points. These structures are 
absent from the nonlinear constant-1// islands described by 
the Rutherford theory.15 

Fitzpatrick and co-workers16-18 have extended HKs cal- 
culation to rotating viscous plasmas, relying on the constant- 
ly approximation in the linear as well as nonlinear regimes. 
Ma, Wang, and Bhattacharjee19 (hereafter MWB) have dem- 
onstrated recently that the constant- tp approximation also 
fails in this case, and that the failure of the approximation in 
the linear and nonlinear regimes can be attributed to the ex- 
tremely large values of A' characterizing forced reconnec- 
tion. As in the static resistive case,12"14 there are fundamen- 
tal distinctions between constant- ip and nonconstant-i/f 
islands in the presence of viscosity and plasma rotation. 
Nonconstant-^ islands have current sheets and inner layer 
structures that are qualitatively different from constant-i/f is- 
lands, with the consequence that their temporal evolution is 
quite different from that of constant-^ islands. 

The main purpose of this paper is to revisit the problem 
of mode locking in cylindrical plasmas, considered by Fitz- 
patrick and Hender (hereafter FH).16 We build on the basic 
results of MWB, but consider in greater detail the time his- 

tory and conditions that lead to mode locking in a rotating 
plasma. 

We discuss mode locking due to the application of an 
external resonant magnetic perturbation that is switched on 
suddenly. (This is exactly the problem discussed by HK and 
FH.) We calculate the relevant thresholds for the size of field 
errors and give a time history of the mode locking process. 
In cases of physical interest, we find that the parametric de- 
pendencies of the critical error fields can be significantly 
different from the constant-i/f theory.16 [Theoretical 
projections4 of low thresholds for such error fields have been 
a concern for the International Thermonuclear Experimental 
Reactor (ITER) device.20] 

The layout of this paper is as follows. In Sec. II, we 
discuss the ideal outer region solution in a cylindrical toka- 
mak. In Sec. Ill, we consider mode locking due to an error 
field that is switched on suddenly. In Sec. IV, we compare 
our analytical predictions with experimental observations 
from COMPASS-C,21 and consider possible constraints on 
error fields for ITER. We conclude in Sec. V with a brief 
summary. 

II. THE IDEAL OUTER REGION 

Following Fitzpatrick, who has given a readable account 
of earlier work in Refs. 22 and 23, we consider magneto- 
static equilibria in a straight periodic cylinder of radius a and 
length 2TTRQ, assumed to represent a large-aspect-ratio, low- 
ß tokamak with circular flux surfaces. The equilibrium quan- 
tities depend only on the radial coordinate r. The compo- 
nents of the equilibrium magnetic field are 

B=[0,ß9(r),ßj, (1) 

where <p = z/Ro is an effective toroidal angle and the toroidal 
field Bv is assumed to be constant. We write 

J*   4-n-rdr 
{rBt 

and 

?(r) = 
rBv 

RoBe 

(2) 

(3) 
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At a rational surface r = rs, we have q(rs) = m/n, where m 
and n are integers. 

The perturbed magnetic field can be written as 

b=V ipxz. (4) 

In the ideal outer region, assuming that the plasma rotation 
velocity is much less than local Alfven speed, we take the 
curl of the linearized momentum equation (without inertia) 
and obtain 

vV+- 
477-/',, 

-<A=0, cBe(nq/m~l)Y~^ (5) 

where the prime indicates a derivative with respect to r, and 

72, 
_7       1   d I   dip\     m2 

r dr\    dr       r2 T (6) 

for a large-aspect-ratio tokamak. The perturbed current den- 
sity is given by 

47T 
-j=Vxb=-V2^ (7) 

If there is a tearing instability, the logarithm of the eigen- 
function, 

ip=ip(r,t) exp [-i(m9-n<p)], (8) 

has a positive jump discontinuity at the rational surface 
r=rs, represented by AQ . On the other hand, if AQ<0, the 
tearing mode is stable. Then far,t)->0 as t-*<*>, and there is 
no free reconnection at the rational surface. However, recon- 
nection on the rational surface can be forced by a perturba- 
tion imposed at the boundary, such as an error field. Forced 
reconnection is not an instability, but evolves out of the 
stable magnetohydrodynamic (MHD) continuum due to the 
influence of the perturbation. The appropriate mathematical 
technique to treat such an evolution (which can have alge- 
braic dependence on time, even in the linear regime) is the 
initial-value method pioneered in plasma physics by Landau. 

As discussed by HK and WB, forced reconnection is 
initiated in a nonconstant-^ linear regime, similar to the lin- 
ear regime for m = 1 kink-tearing modes. The tearing stabil- 
ity parameter A' can be written as 

A^ + A^, 

where AQ is the contribution of the homogeneous solution 
(as in the case of free reconnection), and As'nh is the contri- 
bution of the inhomogeneous solution. Let us assume that at 
t = 0, the perturbation is switched on suddenly. In the lin- 
early perturbed state, we can write 

A,;h= 

Note that the quantity A^'(r,)s^'(r+)_^'(r-) is non. 

zero and measures the jump discontinuity of the helical mag- 
netic perturbation. Since the reconnected flux is zero [i.e., 
iA(rJ) = 0] at f = 0, we obtain Aj'nh—=o at t = 0. This implies 
that the forced reconnection dynamics must begin in a linear 
nonconstant-^ regime. HK were well aware of this fact and 
treated the early linear dynamics for static plasmas correctly 
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without invoking the constant-^ approximation but 
Fitzpatnck argued that the constant-^ approximation holds 
for rotating viscous plasmas (in the so-called viscoresistive 
limit). A critique of Fitzpatrick's arguments is given in the 
Appendix. 

As in Refs. 22 and 23, we assume that the equilibrium 
current Jv is negligible outside the rational surface The gen 
eral solution for Eq. (5) can then be written as 

^fa+fa, (9) 

where ^ is the reconnected flux and fa is the "shielded" 
flux,   ^J given by 

<AD = 
VvF(r),    rs<r<a, 

0, 0<r<r, (10) 

Here Vv is the vacuum flux parametrizing the field-error 
amplitude and the function F{r) is given by 

™-lf -f (11) 

In general, the reconnected flux fa can be written as 
4>R~^R>Pm{r), where Vg=ifi(r=rs,t) is the reconnected 
flux at the rational surface, and fa(r) is a scalar function 
that is normalized to unity at the rational surface and satisfies 
the appropriate boundary conditions. In the case of locked 
mode eigenfunctions that penetrate to regions outside of the 
plasma and the vacuum vessel, the appropriate boundary 
condition is fa(r)-+0 as r^oo. 

It is instructive to compare the outer solution (9) with the 
earlier results of HK by making some simplifying assump- 
tions. We assume that the plasma is bounded by a perfectly 
conducting wall, which implies that fa(a) = 0 (assumed by 
HK as well as FH). Furthermore, we assume that the spatial 
gradients in the outer region current profile are much smaller 
than that in the inner region current sheet and set J' = 0 in 
the outer region (also assumed by HK as well as FH). This 
simplifying assumption amounts to neglecting the effect of 
the equilibrium current in the outer region, and can be justi- 
fied on the grounds that the forced reconnection dynamics is 
dominated by the parameter A'mh, which is controlled by the 
boundary perturbations. [Of course, this assumption can be 
relaxed and solutions can be obtained for Eq. (5) which will 
yield, for instance, a more accurate value for the stability 
parameter AQ]. Under these simplifying assumptions, we ob- 
tain the following analytical solution for fa(r): 

<Am = 
'G(r)-F(r)G(a)/F(a),     rs<r<a, 

G(r),     0<r<rs, 

where 

G(r) = 

(12) 

(13) 

Equations (10) and (12) yield neighboring equilibrium 
solutions similar to equilibria I and II given by HK, with 
i/s(a) = VvF(a) = Va. The nature of these equilibrium 
solutions is determined by the value of ¥Ä . If tyR = 0, there 
is no reconnection and we obtain an equilibrium with an 
ideal  current  sheet,  similar to  equilibrium  I  of HK.   If 
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yR = tyvF(a)/G(a), the reconnection flux assumes its full 
value. Then the equilibrium is smooth, has no ideal current 
sheet, and similar to equilibrium II of HK. 

We will not make explicit use of the solution (12) in the 
rest of the paper and proceed instead with the more general 
from 4/R = ^Ripm{r), obtained with less restrictive boundary 
conditions. Nonetheless, the discussion above makes it quali- 
tatively clear that we have two possible neighboring equilib- 
ria of types I and II, and that the reconnection process begins 
in a nonconstant-i/' regime. We now proceed to obtain the 
time-dependent inner region solutions to determine the dy- 
namical accessibility of these types of equilibria. 

d2h"       ,   ,       1   d . 

dt 

(17a) 

(17b) 

Taking Laplace transforms of both sides of Eqs. (17), we 
obtain 

s2H" = k2x^" + sR-xH"", 

where 

(18a) 

(18b) 

III. INNER REGION DYNAMICS 

We introduce a few basic time scales: ideal, 
TA=rs/vA[vA=Bg(rs)/(4Trp)U2], resistive, TR=4irr)l 
7)c2, and viscous, Tv=pr2/p,L , where p is the mass density, 
c is the speed of light, rj is the parallel resistivity and p,L is 
the perpendicular viscosity. We now consider the case of 
sudden error fields, treated by FH using the constant- ip ap- 
proximation. The correct inner region solution in slab geom- 
etry has been discussed by MWB. In what follows, we 
neglect the effect of curvature and adapt MWB's slab 
solution at the neutral line to the r=rs surface in a cylinder 
by identifying x = r—rs and k=ms(rs)/rs with 
s(rs) = rsq'(rs)/q(rs). 

A. The linear nonconstant-i/f regime 

In a conventional tokamak, the Lundquist number 
S(=TR/TA) is usually much larger than the Reynolds num- 
ber R( = rvlTk). In this regime, the results obtained in Sees. 
IV and V of MWB are relevant. Since the field error is gen- 
erally fixed in position while the plasma rotates, one way to 
derive the relevant analytical results is by repeating the 
initial-value treatment, in the laboratory frame, carried out in 
Sec. IV of MWB. We assume that £10TA< 1, where fl0 is the 
plasma rotation frequency at the r = rs surface. 

We represent the perturbed velocity as v= V </>Xz, where 

<f>(x,t) = i<j>(x,t) exp[ — i{md— n<p)~\. (14) 

In the inner region, it is convenient to take into account the 
effect of plasma rotation by making the transformations 

ip(x,t) = ij/(xj) exp (-/n0f) 

<j){x,t) = 4>{x,t) exp {-iü0t) 

(15a) 

Introducing the dimensionless variables r/rA-*f, x/rs—>x, 
krs-^k, if//rsB9(rs)^t(/, <j>/rsvA—+$, we obtain the linear 
nonideal layer equations: 

H .     1 -£-kxj>=-y, (16a) 

rirh" 1 

— + kx>p" = jb"". (16b) 

Defining dhldt=-k(f>, Eqs. (16) can be rewritten as 

¥(*) =      dt e'"'^{x,t)=\   dte-{P-iü^'4i{x,t), 
h Jo 

(19a) 

4 H(x)=\   dt e-"'h(x,t)=      dt e"{''-''no>'Ä(x,r) 

(19b) 

with h(x,t) = h(x,t) exp (-zT20r) and s=p — iCl0. 
There are two spatial scales in the inner region: the flow 

channel width that scales as ev=R~,/3 and the current chan- 
nel width that scales as e=S~U3. As mentioned above, the 
regime of interest for tokamaks is usually ev>e(S>R), for 
which we follow the inner layer solution given in Sec. IV of 
MWB. We introduce a "middle" region scale 
eD = (S/R)u6e, larger than inner region scale e. In the 
middle region, the plasma is "visco-ideal," i.e., the flux re- 
mains "frozen in " but the flow is damped by viscosity. The 
asymptotic matching condition between the inner, middle, 
and outer regions is [Eq. (37) of MWB], 

lim 
*—0 

dV 

dx~ 
lim 

dV 

dx 
=      dx- 

d2V 

Jx2 
middle 

By Eq. (26a) of MWB, we have 

.2 

hm   — 
IT )X 

Jke *R, 

(20) 

(21) 

where yu, = 5TL=(p-ifl0)rL, e=rL
l=S   "3, and tyR is the 

Laplace transform of tyR . We also have [Eq. (38) of MWB], 

d2V 
dx   . 1 

0       dx- middle 2€D 4k 
(22) 

(15b)       where        €D=(S/R)"°e and MD-(p-^o)eD/e3 

= (p-iÜ.0)S2ß/Rm=(p-iü0)TLD. Taking the Laplace 
transform of the outer region solution [Eqs. (9) and (10) of 
Sec. II], we obtain 

ImoU 
2WV 

(23) 

Substituting Eqs. (21)—(23) in the matching condition (20), 
and inverting the Laplace transform, we obtain for fi0f<^ 1, 

64mV(r,W   t \5'2 /   5       \ 
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where TLv^Rm5
TLD. Equation (24) shows that the recon- 

nected flux has a lower "effective" frequency than the 
plasma rotation frequency, as pointed out by MWB. Al- 
though the island rotates at a speed lower than the plasma 
with respect to the wall, there is no locking at this stage of 
the dynamics. 

B. The nonlinear nonconstant-^ regime 

It has been shown by MWB that the transition to the 
nonlinear regime occurs generally when the island is in a 
linear nonconstant-^ regime. In the nonlinear regime, we can 
use a variant12"14 of the Sweet-Parker model.24'25 Despite 
the apparent simplicity of the Sweet-Parker model, compari- 
son of analytical and numerical results for static13 as well as 
rotating19 plasmas suggests that the analytical predictions are 
accurate to the extent of a multiplicative constant of order 
unity. Hence, we continue to rely on a simply variant of this 
model. In the reference frame moving with the current sheet, 
we obtain 

d*R 

dt 

[2mVv] 3/2 

(25) [rsBe(rs)]
mrSPV' 

where TSPV^ ( TATR) 
1/2( 1 + rR ITV) 

W
. 

Since the current sheet rotates with the island, we obtain 

[2mVvf
12 

txp(iüt), (26) 
dV* 

dt       [rsBe(rs)]
l/2rs?v 

where fl = ü.0-n Afl0 and Afl^ is the change in the toroi- 
dal rotation profile at the rational surface induced by the 
error field (assuming that the poloidal rotation profile has 
been damped by viscosity). Integrating Eq. (26), we obtain 

[2mVv]y2 

^-W[^w]-exp(m/)-        (27) 

C. Torques in the nonconstant-t/r regime 

Following Fitzpatrick,17'22'23 we can calculate the aver- 
age electromagnetic (EM) and viscous torques over the re- 
connection layer, but we do so in the nonconstant-i/' regime. 
The average toroidal EM torque is given by 

. + 
jrn / dip\ rj 

_ IT [2m^y\m 

~2nR°[rsBe(rs)V'2nrSPV- 
(28) 

The viscosity of the plasma tends to relax the rotation profile 
to the unperturbed equilibrium state. However, in the early 
stages of reconnection, the relaxation is partial and occurs 
only in the vicinity of the reconnection layer. The corre- 
sponding localized average viscous torque can be written as 

47T2^3r2p ACl^ 
(29a) 

T-upper_ 1 0vs ~ X_TV 

where      An^Af^r,), *Jr'-[V±(rs)dr/rßl(r)] 

'w/rs, ß1(r) is the perpendicular viscosity, and w is the 

width of the island. In contrast, if the rotation profile is fully 
relaxed across the entire plasma cross section, the average 
viscous torque becomes 

47r2Rlr2
sp Aü0i 

(29b) 
T-Iower  
1 <6VS - 

\eTv 

where X€ = /^[/i1(rJ)rfr/r/x1(r)] is a term of order of 

unity. In both cases, the mode-locking condition is deter- 
mined by the torque-balance equation, 

T'./.EM+T'^VS-O. 

which yields the quadratic equation 

eTV n(n-no)+-J^(y1/2f^ 
5/2 min 

7TT72 = 0, 

(30) 

(31) 

where b=2m^vlrs. Equation (31) differs from the cubic 
equation for Ci obtained by Fitzpatrick.23 It has one physical 
solution, given by 

n= fir 
1 + 

'j.lock 

5/2 

with the locking threshold, 

'i.lock     n 
1/5 

B. m 

nW* ^^^       \2/5/ 
O
T

A
T

SPV      / r. 

2\r 

1/5 

(32) 

(33) 
>v in    \    £l\p eTy   l        \n.Ql 

Note that since A^X,, Eq. (33) yields two thresholds, one 
much higher than the other. It is easy to see that 

-upper 
gj.lock 

B, 

|2/5L lower 
'''      us,\ock 

w B„ 

It turns out that the upper threshold cannot be met for most 
parameters of physical relevance. 

In the following section, we consider the different pos- 
sible scenarios for the time evolution of the system. 

D. Saturation levels and mode locking 

1. The lower saturation level 

In the presence of viscosity, the reconnection time scale 
TSPV in Eq. (25) is much shorter than the resistive diffusion 
time scale TR . As in the Sweet-Parker model, the reconnec- 
tion dynamics is helicity conserving and is characterized by 
the persistence of Y points14 until the dynamics enters a 
constant-i/r regime. The condition for the breakdown of the 
constant-^ approximation is AA'S>1 or equivalently, 
wA'~l, where k~0(rs) is the wavelength and w is the 
island width. This can be seen easily by writing the follow- 
ing expansion for the perturbed flux inside the island: 

<P(x) = ip(0)+i/,'(0)x + O(x2)**ij,(0)[l+A'x],      (34) 

where O^x^w. Clearly, if WA'<§1, we can ignore the 
variation of t/f inside the island and assume i//(x)~ i//(0). 
This is the so-called constant-</r approximation. If wA'~l 
the constant-i/' approximation breaks down and the reconnec- 
tion dynamics occurs in a nonconstant-i/r regime. 

From the outer region solution, we obtain 
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.       2m¥„    (Be(rs)\
m 

r,A's»  ,.T. ,   =|— ]    Q,TSPV. I*< 
(35) 

Therefore, if 

bs<b^<B^rs)[ClTSPVY, 

the island will remain in a nonconstant-</' regime. 
Making use of Eqs. (9)-(ll), we obtain 

2m 
-s(rs)B'e(rs)w

2~2VR+\ —Vv+ #>,)* 

2m 
<2VR + yvw. (36) 

Defining bs=bs/Bs, and Bs = rss(rs)B'g(rs), we can show 
that the island width will saturate at a low level, given by 

1/21 
w j, lower 

~&. 1+     1 + 
4(BS/Be(rs)) 

bs 0,TSPV 

1/2 

(37a) 

We    now    consider    special    cases    of   Eq.    (37a).    If 

(37b) 

bs QTSPV> 1, we obtain 

ws,lower      . ~ 
 "2b, 

which yields 

wA'«2^/2(^4^1     nrSPV~Ps'
2ÜTSPV>\. 

B, 

If bs Q,TSPV~ 1, we obtain 

^ower>2- 

which yields 

wA'~£y2(lrSPV,~l. 

However, if PJ2Cl TSPV< 1, we obtain 

ws, lower     ^n/2 

(37c) 

(37d) 2blu/(Q, TSPV)] 

' s 

which yields 

w&'-~(nTSPV)m~(aTA)y2sm/RV8. 
Simple estimates show that wA'~l for COMPASS-C as 
well as ITER (see the numbers given in Sec. IV). Hence, the 
constant-1// approximation is violated for these devices. For 
DIII-D, the error fields are ramped to attain their maximum 
value slowly (i.e., on a time scale comparable to the resistive 
diffusion time scale), invalidating the assumption of a sud- 
den external perturbation. We postpone the correct treatment 
for DIII-D to a later publication. 

2. Mode locking and the higher saturation level 

If bs>b"pl^k, mode locking occurs early in the 
nonconstant-i/f nonlinear phase, and the reconnected flux will 
grow linearly with time: .12 

**~ 
[2m^v]irzt 

[rsB8(rs)V
l2rs?v 

(38) 

Eventually, the island will reach a constant- ip phase. 
If b?lek>bs>b[°M^ then locking will not occur in the 

early nonlinear stage. Eventually, the rotation profile will 
relax fully and the lower locking threshold will then become 
the relevant one. Hence, mode locking will occur after com- 
plete relaxation. Note that since the island does not grow 
until it locks, it will remain in the nonconstant-</' phase as 
long as it does not lock. After locking, the island will grow 
in accordance with Eq. (38) and evolve into a constant-i/' 
phase. 

In the constant-^ nonlinear phase, the island will satu- 
rate at a higher level than given by Eq. (37a). This higher 
level can be calculated following HK. From Ohm's law, we 
obtain 

dt TR 
-vVs r2,Ab, 

WTR 

(39) 

where w = 2[ty Rl s{r s)B'g(r s)]
m for constant-</r islands. Be- 

fore we discuss the case of forced reconnection, we verify 
that the well-known Rutherford solution15 for free reconnec- 
tion caused by a constant- ip instability follows simply from 
Eq. (39). Since Abs = A'0

yir
R for the instability, we obtain 

d M Kr, 
dt y~ 2TR 

which yields 

w Krs 
t 

= const, 

2TR 

(40) 

(41) 

Now, in the case of forced reconnection, when the constant- 
ly regime is accessible, we obtain 

rs Ab=2m^v+^Rr^'m(r5 

The island equation is then 

dW      1 

~df= W2 1, 

(42) 

(43) 

where 

W= 
r]ip'm{rs)s{r3)B'6{rs 

2myv 

1/2 
W 

271 

and 

r= rMrs)\(r3
s*'m{rs)B'8(rs) 

2mVv 

i/2 

According to Eq. (43), the island saturates when W=\. This 
saturation level is generally higher than given by Eq. (37a), 
and given by 

s,upper 

2',        \rsi/>'Jr,) 
(44) 

Apart from the cases discussed above [leading to satu- 
rated widths (37a) and (44)], the only remaining possibility 
is that in which the field error lies in the range 

bs>Bff(rs)[^rSPV]2 (45) 
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In this case, the island may evolve into a constant-i/f regime. 
However, it is readily seen that the constant-^ condition (45) 
requires a field error that is much too large (of the order of 
the toroidal field for COMPASS-C parameters!) to be rel- 
evant. 

It is thus clear that for most cases of physical interest, 
mode locking occurs if bs>bl°^k. For clarity, we display 
this locking threshold, identifying ^,iock=<bi70

e
c
r

k and replac- 
ing V, by K in Ecl- (33): 

1/5 / n 2 _2 _       \ 2/5 /       \ 1/5 

-G96-228 

^j.lock 

B„ 

^07ArSPVJ 

,9        m  v    2\erv   I    \Rj    ■ (46^ 

We note that the parametric dependencies of Eq. (46) are 
different from those given by the constant-^ theory. For in- 
stance, the threshold (46) scales with the (electron) density as 
ne , which differs from the nf3 scaling obtained by FH.4 

(This assumes a deuterium plasma with equal average elec- 
tron and ion densities and ignores the possible density de- 
pendencies of TR and TV.) 

E. Summary 

The results of Sec. Ill can be summarized as follows. 
The linear regime is nonconstant-^, with a time scale 

T
LD 

=(^ATRITV) ^^o • The island rotation frequency 
slows down, but does not lock to the error field. The transi- 
tion to the nonlinear stage occurs in a nonconstant-^ regime, 
characterized by a characteristic reconnection time scale 
TSPV, helicity conservation, and the persistence of current 
sheets. In the nonconstant-i/r regime, the locking threshold is 
given by Eq. (46). If 

(1) bs<bslock<SBs(rs)[ü,TSPV]2, the island will saturate at 
the level (37a). 

(2) bs>bsioci., mode locking will occur, and the island will 
evolve into a constant-^ phase. In the constant-^ phase, 
the island will saturate at the level (44). 

IV. IMPLICATIONS FOR EXPERIMENTS 

We now consider the implications of the theoretical re- 
sults obtained above for experimental results from 
COMPASS-C. For devices such as DIII-D in which the error 
fields are ramped to attain their maximum value slowly (i.e., 
on a time scale comparable to the resistive diffusion time 
scale), the discussion in Sees. II and III is not applicable. In 
COMPASS-C, error fields are rapidly enhanced by the delib- 
erate imposition of resonant magnetic field perturbations via 
external field coils. (See, for instance, Fig. 2 of Ref. 5.) 
Hence, the results of Sec. Ill can be applied to 
COMPASS-C. 

In Fig. 1, we plot the experimental data (taken from Ref. 
4) on the critical density for locked modes in COMPASS-C 
as a function of the measured m-2, n=\ error field. The 
solid line indicates the theoretical predictions fitted to the 
formula (46). In making these fits we have taken4,5 

n0= lOVs, TA= 1(T7 s, 5= 106, and R= W5. (It should be 
borne in mind that the theoretical formulas have been de- 
rived in the regime S>R.) For these parameters, with 
ne~1013 cnT3,   we   use   (46)   to   obtain   the   threshold 

FIG. 1. Observed critical density of locked modes for Ohmic, deuterium 
discharges in COMPASS-C as a function of the m = 2, n= 1 radial error 
field (normalized by the toroidal field at the edge). The solid lines are the 
theoretical predictions. The theory curves are computed using Eq. (46). For 
other plasma parameters, see Sec. IV. 

^i.iock/5<pS553X10 3. Since there are uncertainties in some 
of these assumed parameters, the fit is done by assuming that 
the first point of the experimental curve coincides with the 
relevant theoretical formula (which is scaled by a multipli- 
cative constant of order unity); the theoretical formula is then 
used to predict the remaining points. 

The establishment of a steady-state plasma equilibrium 
in the presence of a pre-existing error field has not been 
considered in this paper. (In its full complexity, the problem 
is fully three dimensional, as in stellarators.26) Strictly speak- 
ing, one cannot use the results of this paper to make reliable 
predictions for critical pre-existing error fields in the ITER 
device. However, if we follow Ref. 4 (where the FH theory is 
used) and do so, the results of Sec. Ill can be used to make 
comparisons with the predictions of FH. The critical error 
field for locked modes in ITER predicted by FH is quite 
stringent, given \>yJBr2xIBT~2x 1(T5.4 Following Ref. 4, 
we take Ü0rA~ 1(T4 and r,//?0~0.3 for ITER. We assume 
5-10 and R~ 108, consistent with the theoretical assump- 
tion R<S. For these numbers, we obtain the threshold 
Br2l/BT~6X\0 5, which is a little less stringent than the 
prediction of FH. 

V. SUMMARY 

An important mechanism for mode-locking in cylindri- 
cal plasmas is forced reconnection due to resonant magnetic 
field perturbations. The dynamics of this process in the linear 
and nonlinear regimes are generally characterized by very 
large values of the parameter A' that invalidate the constant- 
ip approximation, used in the standard model of Fitzpatrick 
and Hender.16 We have revisited this model and obtained 
results in the nonconstant-^ linear and nonlinear regimes. As 
shown in Ref. 19 as well as this paper, the results of the 
nonconstant-i/' theory are qualitatively  different,  and  are 
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characterized by the features of fast reconnection and persis- 
tence of current sheets (spanning Y points). Such structures 
cannot be dealt with by a constant- ip theory. 

The theory presented in this paper gives a fairly com- 
plete picture of the time history of forced reconnection in the 
linear as well as nonlinear regimes, driven by an error field 
that is switched on suddenly in rotating cylindrical plasmas. 
We find that the time history as well as the critical thresholds 
are different from those obtained from a constant-i/' theory. 
For critical thresholds, the principal result is given by Eq. 
(46), which has been used for comparison with data from 
COMPASS-C. The application of the present theory to the 
observations in DIII-D is complicated by the slow ramp of 
the error field and the possibility of formation of constant- 
4i islands in the early nonlinear stage. This will be the sub- 
ject of a separate publication. 
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APPENDIX: ON THE BREAKDOWN OF THE 
CONSTANT-^ APPROXIMATION IN THE LINEAR 
REGIME OF FORCED RECONNECTION 

It has been clearly established that in the early linear 
phase, forced reconnection will begin in a nonconstant-<p 
stage with an initial condition of zero reconnected flux in the 
resistive (HK and WB) as well as viscoresistive limits. [See, 
for example, Fig. 2 and Eq. (25) of HK, Fig. 4 of FH, ob- 
tained by numerical integration of the linearized equations, 
and Eqs. (16), (40), and (54) of ZWB, who also present 
numerical tests of their analytical results.] However, in Sec. 
7 of Ref. 17, Fitzpatrick claims that "the constant-^ approxi- 
mation holds in the viscoresistive limit" of forced reconnec- 
tion because of the condition [inequality (115) of Ref. 17] 

, 2 

|Aü)|Tä 

■'layer 
<\. (Al) 

Comparing Eqs. (Ilia) and (111b) of Ref. 17 to Eqs. 
(20)-(22) of the present paper, we see readily that they are 
identical, except that the variable s (or equivalently, dldt) in 
the present paper is replaced in by i Aw in Ref. 17. Note that 
Aw is equivalent to our parameter QQ. Then, the essential 
difference between our treatment and that of Ref. 17 can be 
traced to the assumption in Ref. 17 that the functions ijj and 
$ (in our notation) are independent of time. Such an assump- 
tion is typical for problems involving free reconnection or 
tearing eigenmodes, and fundamentally incorrect for forced 
reconnection. During free reconnection, an unstable eigen- 
mode can grow exponentially in time from an arbitrarily 
small nonzero perturbation of the equilibrium. During forced 
reconnection, the perturbation grows out of the stable MHD 
continuum, and one has to solve an initial-value problem 

with an initial condition of zero reconnected flux. Therefore, 
the term i Aw in Sec. 7 of Ref. 17 should be replaced by the 
variable s = p — i Aw. Then the dimensionless quantity on 
the left-hand side of Eq. (A1) [or inequality (115) of Ref. 17] 
can be rewritten as 

srRe
2

D = se2
D/e

3 = ßD = sTLD, (A2) 

where TLD = (TATä)
2/3

/T[,
/3
 (see Sec. IV of ZWB). It follows 

then there should always exist a period t<rLD, or ßD>l 
when the constant-ip approximation (Al) breaks down. In 
fact, as shown by ZWB, the linear phase in the viscoresistive 
regime holds when t<rLD, or ^D>\, and that the recon- 
nection dynamics enters a nonlinear nonconstant- ijj regime, 
with no room whatsoever for a constant-</r linear phase when 
ßD<\. 
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ABSTRACT 

The dynamical evolution of a two-dimensional coronal loop from a smooth initial state containing an X- 
type neutral line is considered. An exact solution of the linearized ideal magnetohydrodynamic equations 
shows that the amplitude of the current sheet at the separatrix grows exponentially with time while its width 
shrinks at the same rate. Thus, although there is a strong tendency for a current sheet to form, a true singu- 
larity is not realized in finite time. Resistivity intervenes, and the ideal phase is followed by a linear resistive 
phase in which the dynamics is still exponential in time with a growth rate proportional to S~1/3, where S is 
the Lundquist number of the coronal plasma. The linear resistive phase is followed by a helicity-conserving 
nonlinear phase in which the growth rate is algebraic in time, and the reconnection rate is proportional to 
S~112, as in the Sweet-Parker model. It is demonstrated that the heating caused by these current sheets can be 
large enough to account for the energy balance in quiet as well as some active coronal loops. 
Subject headings: MHD — Sun: corona — Sun: magnetic fields — Sun: X-rays, gamma rays 

1.   INTRODUCTION 

For almost two decades now, the problem of current sheet 
formation in the solar corona has stimulated considerable 
research as well as controversy. There are two facets to this 
problem: one involves geometry, and the other involves 
dynamics. Geometry is involved in the question: where do 
current sheets form? Dynamics determines the answer to the 
question: how rapidly in time do current sheets form? 

There are some magnetic configurations in which the ques- 
tion pertaining to geometry has a clear answer. For instance, it 
is well-understood that the natural sites for singularity forma- 
tion in a toroidal configuration are the so-called rational 
surfaces on which field lines close on themselves. In this case, 
the rational surfaces are the source of Separatrices. Dynamical 
considerations, based upon ideal and resistive magnetohydro- 
dynamics (MHD), show that current singularities tend to form 
at the separatrices, but not in finite time (Rosenbluth, Daga- 
zian, & Rutherford 1973; Hahm & Kulsrud 1985; Waelbroeck 
1989; Wang & Bhattacharjee 1992a). [If there is a finite-time 
singularity, the current density may blow up, for instance, as 
(tc — t)~", where tc and a are positive constants. In contrast, if 
the current grows algebraically or exponentially with time, it is 
an infinite-time singularity.] 

If we consider three-dimensional magnetic fields in general, 
it is not obvious where the separatrices are. Greene (1988) has 
emphasized that magnetic nulls (where the magnetic field van- 
ishes identically) are a copious source of separatrices. But there 
are many configurations of relevance to the solar corona in 
which the magnetic field may not vanish anywhere. A popular 
model, suggested by Parker (1972), involves a straight axial 
magnetic field B = B0z between two parallel plates at z = ±L 
which is then deformed by the motion of photospheric foot- 
points in the x-y plane. If the length L of a straight, cylindrical 
coronal tube is much larger than its transverse dimension a, it 
is possible to calculate some asymptotic force-free equilibria 
using the inverse aspect ratio a/L as a small parameter (van 
Ballegooijen 1985; Zweibel & Li 1987; Strauss & Otani 1988; 
Bhattacharjee & Wang 1991; Wang & Bhattacharjee 1992b; 

Longcope & Sudan 1992). (This "long-thin" approximation is 
appropriate for many coronal loops for which typically 
L ~ 1010 cm, and a ~ 108 cm which yields an aspect ratio 
L/a ~ 100.) Then, if the z-dependence of B is weak, the effective 
dimensionality of the problem can be shown to reduce from 
three to two. This reduction leads to considerable simplifica- 
tion of the three-dimensional MHD equations. Elsewhere, we 
have shown that free or forced reconnection processes which 
conserve magnetic helicity tend to produce current sheets near 
the separatrices of a long-thin coronal tube (Bhattacharjee & 
Wang 1991; Wang & Bhattacharjee 1992b). 

Although the long-thin coronal tube is a useful model, it 
entails an asymptotic reduction of the three-dimensional 
MHD equations keeping Bz large and fixed. The relevance of 
the conclusions obtained from this reduced MHD model to the 
solar corona can be questioned on the ground that the foot- 
point motions on the photosphere are likely to affect Bx. Also, 
these are asymptotic magnetostatic equilibria, and the struc- 
ture of separatrices in such a model depends sensitively on the 
approximations used. 

A different model of the solar corona that is relevant and yet 
has the virtue of analytical tractability is shown in Figure 1. 
(The x and y coordinates lie in the plane of the paper and the 
z-coordinate points upward.) The system is invariant to trans- 
lation along the z-axis and is characterized by the presence of 
an X-type neutral line. The formation of current sheets in this 
geometry has been investigated analytically as well as numeri- 
cally (Zwingmann, Schlindler, & Birn 1985; Antiochos 1987 
Moffatt 1987; Aly 1987; Low & Wolfson 1988; Jensen 1989 
Karpen, Antiochos, & DeVore 1990; Zweibel & Proctor 1990 
Finn & Lau 1991; Vekstein & Priest 1992). It turns out that 
this simple (but subtle!) model is not free of controversy. 
Whereas some (Zwingmann et al.  1985; Moffatt 1987; Aly 
1987; Low & Wolfson 1988; Jensen 1989; Zweibel & Proctor 
1990) claim that current sheets should occur at the separatrix 
by continuous and finite footpoint motions in an initially 
smooth equilibrium, others (Karpen et al. 1990; Finn & Lau 
1991) refute such a general claim. We review here briefly the 
different aspects of this debate. 

415 
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FIG.  1.—Projection of constant-^ surfaces on the x-y plane for a coronal 
loop with an X-type neutral line. 

For a configuration with translation symmetry in z, the mag- 
netic field B can be represented as 

B = V^(x, y) x z + Bz{x, y)z . (1) 

The Grad-Shafranov equation for static force-free equilibria is 

dip     2 (2) 

where B, = B.(i//). In Figure 1, we show a cross section of a 
coronal loop in the x-y plane, with the footpoints of the field 
lines intersecting the photosphere which is taken to be the 
y = 0 plane. The Separatrices 0^ and 02 0'2 cross at 0 which 
is the point of intersection of the AT-typc neutral line with the 
x-y plane. 

Let us assume that there is a smooth equilibrium with Bz = 
0 everywhere initially. Then the motion of the footpoints in the 
z-direction will cause the growth of Bz. If we assume that the 
motion of footpoints takes the configuration through a 
sequence of static equilibria, then these equilibria can be calcu- 
lated by specifying the footpoint displacement in the z- 
direction, 

m = BMWM , (3) 

where v'(ip) = { dl/B. An important question on which opinion 
is divided is the following: is it possible for this configuration 
to develop current sheets at the separatrix by means of smooth 
photospheric displacements? 

Some answer the question in the affirmative. They note that 
field lines to the left of Olt such as the one at A', are connected 
to points to the right of 02, such as A. This means that 
BZ(A) = BZ(A'), and d(A) = d{Ä). On the other hand, field lines 
to the right of Ou such as the one at B, are connected to points 
to the left of 0'2. This implies that BZ(B) = BZ{B') and 
d(B) = d(B'). However, since d(A) and d(B) are independent of 
each other, it is possible for them to be discontinuous across 
the separatrix for smooth motions of the footpoints. For 
example, let us assume that the footpoints near 0'2 move in the 
z-direction to yield BZ(B) = BZ(B') > 0 and BZ{C) = BZ(C) > 0, 
but that the footpoints to the left of 0^ and to the right of 02 
do not move which means that BZ{A) = BZ{A') = 0. Then as A' 
and B -» Ot and B -> 02, there should be a jump in Bz and a 
current sheet on the separatrix, given by 

ABZ = BZ{B) - BZ(A') = BZ(B) > 0 (4) 

The simple argument given above is complicated by the fact 
that in this class of force-free equilibria with B, = BZU), there 
may be logarithmic singularities in the photospheric displace- 
ments d(ip). Assuming that the point 0 is hyperbolic and that 
iA = 0 at 0, it can be shown that v'{ip) ~ In | ij/1 (Grad, Hu, & 
Stevens 1975; Zwingmann et al. 1985). If we take B, ~ B0 = 
constant, it follows that d{\p) ~ In | \p | which means "that dty) 
must have logarithmic singularities as the separatrix \ji = 0 is 
approached. [If, on the other hand, we demand that 
d(ip) -> d0 = constant as ij/ -> 0, we get d/dip{B2,/2) ~ 
1/(<A In | iA I )3 which indicates that it would be impossible to 
satisfy the condition for force-free equilibria.] 

To avoid the logarithmic singularities in d{\jj), Finn & Lau 
(1991) construct classes of self-similar equilibrium solutions of 
the form t// = r2ßQ(6), where r2 = x2 + y2, the angle 0 is mea- 
sured from one arm of the separatrix where the function Q 
vanishes and ß is a constant that lies in the range j < ß < 1. 
These solutions have the virtue that the footpoint displacement 
d(ij/) is a continuous function in each of the quadrants divided 
by the separatrix. Moreover, the current density Jz is not a 
(5-function but has fractional power-law singularities at the 
separatrix. 

Though interesting in their own right, Finn & Lau's solu- 
tions (and generalizations thereof, due to Vekstein & Priest 
1992) are derived entirely from considerations of magneto- 
statics. The assumption is made implicitly that the coronal 
plasma will adjust to photospheric footpoint motion in order 
to maintain magnetostatic equilibrium, but no attempt is made 
to determine how rapidly in time the adjustment actually 
occurs. One of the main objectives of this paper is to examine 
critically this assumption, for it is at the heart of the question of 
dynamical accessibility of any singular equilibrium from a 
smooth initial state. 

The solutions of Finn & Lau depend crucially on the validity 
of the condition B, = Bz(\p) which is a requirement for magne- 
tostatic equilibrium. Let us consider a smooth initial equi- 
librium for which Bz = 0. If this equilibrium is deformed by 
smooth footpoint displacements, it is important to determine 
from the dynamical equations of ideal MHD whether the con- 
dition Bz = Bz(\jj) is attained in finite time. One of the signifi- 
cant results of this paper is that the state Bz = Bz(ip) is not 
attainable in finite time. An exact solution of the (linearized) 
ideal MHD equations shows that for short times, of the order 
of the Alfven timescale, the amplitude of the current sheet 
grown exponentially with time while its width shrinks expo- 
nentially (§ 3). Thus a current sheet of truly infinite amplitude 
and zero thickness is not dynamically accessible in finite time if 
we begin from a smooth initial state. 

What, then, is the role of Finn & Lau's equilibrium solutions 
with power-law singularities in the actual dynamical evolution 
of the corona? If we choose as our initial condition one of these 
equilibrium solutions, we show (in the Appendix) that current 
singularities are realized in finite time. But this occurs because 
the singularity already exists in the initial state! If we demand, 
as is physically reasonable, that the initial state be smooth, 
then none of the solutions with power-law singularities are 
dynamically accessible in finite time. 

Resistivity, no matter how small, intervenes in finite time. 
Beginning from a smooth initial state, we demonstrate that the 
ideal phase in which the current sheet amplitude grows expo- 
nentially is followed by a linear resistive phase in which the 
amplitude continues to grow exponentially, but proportional 
to riil3 where r\ is the plasma resistivity (§ 4). This linear phase 
is then followed by a helicity-conserving nonlinear phase in 
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which the growth of the current sheet is algebraic in time, and 
the reconnection rate is proportional to rji/2, as in the Sweet- 
Parker model (Sweet 1958; Parker 1957) (§ 5). In this phase, 
due to the constraint imposed by helicity conservation 
(Waelbroeck 1989; Bhattacharjee & Wang 1991), the X-point 
structure in the initial state changes to a 7-point structure 
(Sweet 1958; Syrovatsky 1981). Estimates of coronal heating 
due to current sheets along X-type neutral lines shows that the 
heating is large enough to account for the energy balance in 
quiet, as well as some active coronal loops. In § 6, we give a 
summary of our results and discuss their implications. 

2.  THE DYNAMICAL EQUATIONS 

For footpoint displacements which preserve the translation 
invariance of the system along z, the magnetic field B may be 
calculated using the representation (1). The time evolution of \\i 
and Bz are specified by the equations 

dt £"♦■ 
and 

dBz     ,,      ^     T]C
2
    , 

where d/dt = d/dt + v± • V, and 

The fluid velocity v can be represented as 

v = z x V$ + v,z . 

From the momentum equation, we get 

dt      cp 

dj_d_g_ 

dy dx 

(4) 

(5) 

(6) 

(7) 

(8) 

and 

dvz 

dt 4np 
0A, Bz) (9) 

where a> = V2cf), J = (c/4n)V24i, p is a constant density, and 

d      d      ,, — = —\-(4>, 
dt    dt    w' ) (10) 

To simplify the analysis, we consider the geometry drawn in 
Figure 2 which is topologically equivalent to the one in Figure 
1. In particular, the Z-type neutral line which intersects the x-y 
plane at the point 0, is contained in the box (of width a) 
indicated by the dotted line in Figure 2. The initial equilibrium 
is taken to be a vacuum magnetic field described by 

iA0(x, y) = B0xy/a . (11) 

[Note that J0 = (c/4n)V2ip0 = 0.] The condition for ideal mag- 
netostatic equilibrium gives 

W>o> W = (<£o, wo) = ° (12) 

which is obtained by setting d/dt = 0 and r\ — 0 in equations (4) 
and (8). Equation (12) implies that 

FIG. 2.—Projection of constant-i// surfaces on the x-y plane for a model 
initial equilibrium. The contours within the dotted square correspond to \p0 = 
B0 xy/a. 

Furthermore, equations (5) and (9) give, respectively, 

OAo, ß.-o) + WoWo). »ro] = 0 , (14) 

and 

OAo, vz0) + r^oO/a BI0] = o . (15) 

If we define the equilibrium Elsässer variables f0 = Bz0 + vz0 

and g0 = Bz0 — vz0, then equations (14) and (15) can be com- 
bined to give 

(•Ao,/o) + Wo('AoUo]=0, 

and 

0Ao> do) - [0o("/'o)» do] = 0 ■ 
Equations (16) and (17) are satisfied if 

So =/o("Ao)    and    g0 = gQ(\ji0) , 

or if 

ßzo = #z0(iAo)    and    VzO = VzoWo) 

(16) 

(17) 

(18) 

(19) 

Equation (19) must be satisfied by all equilibrium solutions. 
We demonstrate in § 3 that if the initial equilibrium (11) is 
perturbed, then the condition (19) cannot be attained in finite 
time. For simplicity, we consider footpoint displacements 
along z that perturb dominantly the equilibrium magnetic field 
in the square marked by the dotted line as in Figure 2. We 
focus on the square because it contains the X-line. 

3.  THE LINEAR IDEAL PHASE: AN EXACT SOLUTION 

In what follows, it is convenient to transform to dimension- 
less variables B/B0 -* B, x/a -* x, t/xA -> t, where TA = a/vA and 
vA = B0/{4np)1/2 is the Alfven speed. For the initial equilibrium 
(11), since Bz0 = v,0 = <p0 — 0, the linearized ideal MHD equa- 
tions for B, and vz are given, respectively, by 

dv. 

and 

dB, 

dt 

dvz        dB: 

dt ~y dy 

dv. 

dy dx 

dx 

(20) 

(21) 

If we define the Elsässer variables/= Bz + vz and g = 5. — v„, 
then equations (20) and (21) can be combined to give 

0o = <PoWo) >    wo = «o(>Ao) (13) 

81=    51-X
dl 

dt        dy        dx ' 
(22) 
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Sg=    dg_ 

dt        dx - y 
dg 
dy 

(23) 

Equations (22) and (23) can be integrated easily along their 
characteristics. For equation (22), the characteristics are 

dx 

Tt=x' 

dy 

~dt= ~y ' 

whereas, for equation (23), they are 

dx 

7t = ~x- 

dy 

dt = y 

(24a) 

(24b) 

(25a) 

(25b) 

Along their respective characteristics, equations (22) and (23) 
become 

dt 
= 0 

and 

dg 
dt 

The exact solution of equation (26) is 

f(x, y, t) =f(x0, y0, t = 0) =/0(x0, y0) , 

where 

x(t) = x0e' , 

and 

y(t) = y0e-'. 

Equation (28) can then be rewritten as 

f(x,y,t)=f0(xe-,,yer). 

Similarly, from equations (25a), (25b) and (27), we get 

g{x, y, t) = g0(xe', ye~') . 

We define 

and 

whence 

b(x, y) = BJLx, y,t = 0), 

u(x, y) = v.(x, y, t = 0) , 

Bz(x,y,t) = (f+g)/2 

= \ib{xe~\ ye') + u{xe~', ye')'] 

(26) 

(27) 

(28) 

(29a) 

(29b) 

(30) 

(31) 

(32) 

(33) 

(34) 

The transverse current density (i.e., the current density perpen- 
dicular to z) is 

J± = 
dBz\

2     I'dBA21112 

dx)   + [~dj) 
dB, 

dx0 
8y0J 

e . 
1/2 

(35) 

For large t, the first term in the parentheses on the right-hand 
side of equation (35) is much smaller than the second term. 
Hence 

J±. -J0
e'> (36) 

where J0 ~ 8BJdy0. This current density is localized near the 
separatrix \ji = 0, and the width of the current channel shrinks 
as e ' along y. Thus, a true current singularity is realized only 
in infinite time. The boundary displacement 

vz(x, y, t')dt' 

is bounded for all time and tends to infinity as t -> oo. We 
demonstrate in § 4 that resistivity, no matter how small, inter- 
venes in finite time to thwart the formation of the current 
singularity. 

Why does it take infinite time to form a current singularity 
in this system? In the initial state (11), Bz = 0 everywhere. It 
takes the coronal field approximately an Alfven time TA ~ 
a{Anp)ll2IB1 to respond to photospheric footpoint motion 
occurring on the timescale T0. If TA < T0, then the system 
adjusts to maintain magnetostatic equilibrium. However, since 
B± ->■ 0 and TA -» oo in the vicinity of the Z-point, it takes the 
system infinite time to attain magnetostatic equilibrium. 

4.   THE LINEAR RESISTIVE PHASE 

In the linear resistive phase, the equations governing B, and 
vz can be written (in dimensionless form) as 

dB, 

dt 

dv, 

dy 

8V* 1   „2„ xTx+SVB< 
and 

dv, 

dt 

dB, dB, 
dy dx 

(37) 

(38) 

where S = xR/xA is the Lundquist number, with rR = 4na2/r]c2. 
In the linear ideal phase, if d/dx0 ~ d/dy0 initially, we have 

ox 
■ — e 

dx 
d       ,   8 

■o     dy dy0 
(39) 

Hence, carrying over the approximation d/dx « d/dy into the 
linear resistive phase, equations (37) and (38) simplify to 

dBz 

dt 

dv2     1 d2B. 
■ V —- -I 1 
y dy     S dy2 

and 

dv. dB, 

dt ~ y dy 

(40) 

(41) 
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We solve the initial-value problem using Laplace transforms 
(Hahm & Kulsrud 1985; Wang & Bhattacharjee 1992a, b). We 
define 

B dte-p'Bz,    Rep>0. 

Equations (40) and (41) yield 

p d2B 
p2(B - b) 

S 8y2+y dy \' By 

dB 
y — + " 

(42) 

(43) 

where b = b/p, and b and u are defined by equations (32) and 
(33), respectively. Following Hahm & Kulsrud (1985), we 
define the small parameter e = 0/S)1/4 and the stretched vari- 
able 9 = y/e. Then, equation (43) becomes 

p2(B -b) = e2B" + d(B' + u') + 92B" , (44) 

where prime denotes differentiation with respect to 0. Equation 
(44) can be solved in different asymptotic limits. For times 
t 4z1 = S1'3 (which corresponds to ij = T^

3
!

2
/
3
 in dimen- 

sional time), since pS1'3 $> 1 for fixed S, equation (44) becomes 

(j>Sll3)V2(B - b) = B" . (45) 

Equation (45) motivates the choice of rescaled variables p1 = 
pS113 and 01 = yS113. Then (43) can be written in the form 

Pl(S, - Sj = d2Bjde\, 

where 

*i = dt1e-pitlB:,    ti = t/r1, 

(46) 

(47) 

andb! = b/pv Writing Bl = Bk exp (-kB,), with k > 0, we get 

b 
B> 

Pl-k2 (48) 

The inverse Laplace transform of equation (48) gives Bz ~ 
exp (k2tx) = exp (k2S~ll3t). Equation (35) then yields, near the 
X-point, 

j1(0, 0, t) = J±(0, 0) exp (k2S~ 1/Jt) , (49) 

which means that for TA -4 t < x1; the transverse current con- 
tinues to grow exponentially with time, but with a character- 
istic (dimensional) growth rate = Tgll3tj!3. However, this time 
dependence, which is exponential in both the linear and ideal 
resistive phases, should be contrasted with the time depen- 
dence in Taylor's model (Hahm & Kulsrud 1985; Wang & 
Bhattacharjee 1992a) in which the current density at the 
separatrix grows algebraically with time. 

5.  THE NONLINEAR RESISTIVE PHASE 

A necessary criterion for the validity of linear theory is that 
the magnetic island width be much smaller than the reconnec- 
tion layer width. When the island width becomes comparable 
to the reconnection layer width, the reconnection process 
enters a nonlinear phase. In this phase, the dynamics conserves 
helicity, and the current sheet that develops in the linear phase 
is sustained. However, the spatial and temporal scales that 

characterize its nonlinear development are different from those 
in the linear phase (Waelbroeck 1989; Bhattacharjee & Wang 
1991; Wang & Bhattacharjee 1992a, b). As discussed below, 
the reconnection dynamics in this phase is qualitatively similar 
to that in the Sweet-Parker model of magnetic reconnection 
(Sweet 1958; Parker 1957). 

To investigate the nonlinear phase, it is useful to make the 
coordinate transformation (x, y) -> (\p, lL) where lL is the length 
along a BL line measured from the point with coordinates 
x = y. (This applies to Fig. 2.) We assume that the inequalities 

ir^^h' 
8_    (fy_d_ 

dt ^ dt dip' 
(50) 

hold. The solutions to the governing equations are then self- 
similar. Specifically, if x -> ax and v -» ay, then BL -> aBL and 
\jj -* v}\\i. (This scaling property is exactly satisfied by the 
exterior region solution for ß = 1, given by Finn & Lau.) Near 
the Z-point, BL = (2i/01/2. 

We now describe a slight variant of the Sweet-Parker model. 
From equation (4), we get 

dijj/dt^S-'BJÖ , (51) 

where ö is the width of the current sheet. Outside the current 
sheet, at the inner limit of the exterior region, we have 

dt 
~i>-Vi/> = tvBx (52) 

From the equation of continuity for an incompressible plasma, 
we get 

v+L övlx (53) 

where L is length and <5 is the width of the current sheet. From 
the ideal Ohm's law which holds in the exterior region, we have 

Using equations (53) and (54), we get 

v, ~ SBJL , 

which implies, by equations (51) and (52), that 

From equations (51) and (56), we then obtain 

dt 

1    B3!2 

S!/2  Ll,2 
1 

Sl/2 
3/4 

Integrating equation (60) with respect to time, we get 

,/,~(S-1/2t)4. 

(54) 

(55) 

(56) 

(60) 

(61) 

Since Bz = 0 at t = 0, it follows from equation (5) that B. ~ 
K0 \\i, where K0 is a slowly varying function of lL and t. There- 
fore, 

Jx 5 „1/2 
(62) 
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which for t ~ TSP = T^
2
X\[

2
, yields a current sheet of amplitude 

•/JL(0, 0, t ~ TS ,1/2 

47ra' 2\ 5/2 

Thus, the current sheet has a width proportional to S~1/2, and 
reconnection occurs on the characteristic Sweet-Parker time- 
scale SU2 (which is T^

2
1R

2
 in actual time). We note that these 

spatial and temporal scales are very similar to those for the 
nonlinear m = 1 kink-tearing instability in a cylindrical loop 
(Strauss & Otani 1988; Waelbroeck 1989; Biskamp 1991). Fol- 
lowing the discussion given elsewhere (Waelbroeck 1989; 
Bhattacharjee & Wang 1991), it can be shown from the con- 
straint of helicity conservation that the X-point 0 is deformed 
to form Y-points. 

It is interesting to note that Parker (1987) (see Appendix B of 
his paper) has discussed the problem of an inviscid incompress- 
ible fluid that is squeezed out from the region between two 
neighboring surfaces. Parker claims that if the two surfaces are 
mutually convex, they may be brought into contact in finite 
time whereas plane surfaces require infinite time. From this 
claim, it may be expected that if two surfaces that are initially 
convex change in time to planar surfaces, the rate of fluid 
expulsion should slow down. Although Parker's consider- 
ations do not directly apply to our model, there is a qualitative 
analogy: as the initial configuration near the separatrix flattens 
out in time from an Appoint geometry to a Y-point geometry, 
the rate of reconnection as well as the growth of the current 
singularity slows down. 

6.  SUMMARY 

A principal contribution of this paper is the dynamical 
description of current sheet formation and reconnection in 
two-dimensional coronal loops with Z-type neutral lines. Pre- 
vious considerations of this model have been essentially con- 
cerned with calculations of magnetostatic equilibria. Though 
those considerations are important because the system tends to 
evolve through a sequence of equilibria in the exterior region, it 
is equally important to consider what occurs in the interior 
region localized near the separatrix. The results presented in 
this paper demonstrate if we start from a smooth initial state, a 
true magnetostatic equilibrium is not established everywhere 
in the plasma in finite time. We show that the amplitude of the 
current sheet at the separatrix does tend to blow up while its 
width tends to shrink to zero, but this is merely a tendency and 
is not realized in practice. Thus, neither a true singularity in the 
current density nor a divergence in the footpoint displacement 
is dynamically accessible. 

For the present model, we are able to obtain specific 
dynamical results within the framework of ideal as well as 
resistive MHD. In particular, we have given some exact solu- 
tions of the linearized ideal MHD equations which are valid on 
the Alfven timescale. We find that the transverse current sheet 
amplitude grows as exp (f/xA) while its width shrinks as exp 
(-'AA)- The effects of a small but nonzero resistivity become 
important subsequently, and on the timescale T, = T

2
/
3
^

3
 the 

current sheet grows as exp (t/Tl). Following this linear resistive 
phase, the plasma enters the (nonlinear) Sweet-Parker regime, 
in which the transverse current density grown algebraically 
with time. Eventually, this current sheet smooths out on the 
diffusion timescale (xR). 

We hope that the calculations given in this paper will put to 
rest some of the controversy that has dominated the discussion 
on current sheet formation in coronal plasmas. We address, in 
particular, the doubts raised by some computational studies'on 
the validity of the current sheet picture. These computational 
studies demonstrate that though there are strong concentra- 
tions of current density, the current density does not lose its 
smoothness within the time of computation. For the analytical 
model considered in this paper, we show that this is indeed 
what should occur, and the inability to find <5-function current 
singularities in finite computing time is not due to a lack of 
numerical resolution. But even though the current sheet ampli- 
tude does not become infinitely large in finite time in the 
present model, it is sufficiently large that it causes intense 
coronal heating, as originally envisioned by Parker (1972). 
Moreover, the heating in the presence of X-type neutral lines 
appears to be an order of magnitude larger than in the straight 
cylindrical loop model considered in our earlier work (Wang & 
Bhattacharjee 1992b). If P0 is the heating power for a loop 
without current sheets, and P the heating power in the pres- 
ence of current sheets at X-type neutral lines, then, using equa- 
tions (60), (61), and (63), of Wang & Bhattacharjee (1992b), we 
estimate that 

P_ 

Pn 

nJ\öaL 

r\J\a2L 
S1'2 ~ 105 

(64) 

which is an order of magnitude higher than obtained before. 
Taking P0 ~ (10lo-10n) W, a ~ 108 cm, equation (64) give the 
energy flux P/a2 ~ (103-104) W m"2. This heating can account 
for thermal energy balance in all quiet and many active loops. 

This research is supported by the National Science Founda- 
tion under grant ATM 91-00513 and the Air Force Office of 
Scientific Research under grant F49620-93-1-0071. 

APPENDIX 

We consider the time evolution of a coronal plasma with power-law singularities in the initial state. Without loss of generality, < 
läKC 

Repeating the procedure in § 3, we get 

>Ao = {xyf ,       ß < 1 

dt      HV0\y dy      8xJ ' 

dv._ (   3BZ        8BZ 

(Al) 

(A2) 

(A3) 
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where a = 1 — l/ß < 0. If we define a new variable x = ß\l/% t, equations (A2) and (A3) reduce to equations (20) and (21), respectively, 
except that the variable t is replaced by T. It then follows that 

JL ä J0 exp (/ty0 t). (A4) 

As \\i0 -* 0, 4i% -* oo and hence, we obtain a current singularity in finite time at the separatrix where i//0 = 0. We note, however, that 
this finite-time singularity is an artifact of the initial condition (A2) which is itself singular. The dynamical evolution takes a singular 
initial state (with a power-law current singularity) to a more singular state (with an exponential current singularity) in finite time. If, 
on the other hand, we start from a smooth initial state (with ß — 1), it is possible to approach (exponentially in time) but never truly 
access the singular equilibria with ß < 1 in finite time. 
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Dynamics of current sheet formation and reconnection in two-dimensional 
coronal loops 

Z. W. Ma, C. S. Ng, Xiaogang Wang, and A. Bhattacharjee 
Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 

(Received 11 January 1995; accepted 27 April 1995) 

Current sheet formation and magnetic reconnection in a two-dimensional coronal loop with an 
X-type neutral line are simulated numerically using compressible, resistive magnetohydrodynamic 
equations. Numerical results in the linear and nonlinear regimes are shown to be in good agreement 
with a recent analytical theory [X. Wang and A. Bhattacharjee, Astrophys. J. 420, 415 (1994)]. The 
topological constraint imposed by helicity-conserving reconnection is discussed. It is found 
numerically that helicity-conserving reconnection causes the initial X-point structure of the loop to 
change to Y points, with current sheets at the separatrices encompassing the Y points. Implications 
for observations are discussed. © 1995 American Institute of Physics. 

I. INTRODUCTION 

Two-dimensional (2-D) coronal loops with X-type neu- 
tral lines are of considerable interest from the standpoint of 
theory as well as observations. Such configurations are ana- 
lytically and computationally tractable, and can represent 
with acceptable realism many observed features of coronal 
loops, reconstructed from X-ray images and magnetograms. 
In particular, it is widely believed that a study of such con- 
figurations can help elucidate the fundamental physical pro- 
cesses underlying a multitude of solar phenomena such as 
nanoflares, microflares, or x-ray bright points. 

Several analytical and computational studies1-9 of two- 
dimensional coronal loops with X-type neutral lines have 
been carried out, and have dealt with the issue of the exist- 
ence of magnetostatic equilibria with current sheets. The 
general question that is addressed in these studies is the fol- 
lowing: if we begin with an initial state that is a smooth 
solution of the magnetostatic equilibrium equations, is it pos- 
sible, by means of smooth photospheric footpoint motions, to 
obtain neighboring equilibria with current sheets, i.e., singu- 
lar current densities that result in jump discontinuities in the 
magnetic field? The existence of current sheets in the context 
of solar (and other astrophysical) plasmas has a crucial bear- 
ing on the coronal heating problem, as first pointed out by 
Parker,10 who has given a comprehensive discussion of this 
problem in a recent monograph.11 

The two-dimensional coronal loop with an X-type neu- 
tral line is a configuration in which there is no doubt regard- 
ing the tendency of the system to develop current sheets. 
This is because this system has well-defined separatrices, 
where the current density will tend to be singular for a large 
class of footpoint displacements. However, there has been 
some debate on the precise nature of the current singularities 
and the footpoint displacements that produce them. Finn and 
Lau8 have argued that some equilibrium current-sheet solu- 
tions discussed in the literature are characterized by foot- 
point displacements that have logarithmic singularities12,13 

near the separatrix, and are therefore not admissible as a 
class of smooth, physical, footpoint displacements. To avoid 
these logarithmic singularities, Finn and Lau (as well as Vek- 
stein and Priest9) have constructed scale-invariant equilib- 

rium solutions that have smooth footpoint displacements and 
fractional power-law current singularities near the separatrix. 

In all the analytical studies mentioned above, the focus is 
on the nature of the magnetostatic equilibrium solutions. The 
assumption is made implicitly that the coronal plasma will 
adjust to photospheric footpoint motion in order to maintain 
magnetostatic equilibrium, but no attempt is made to deter- 
mine how rapidly in time the adjustment actually occurs. It 
should be emphasized that this is not merely an academic 
question. Observations of microflares and x-ray bright points 
in the solar corona exhibit a whole range of temporal depen- 
dencies from burstiness to relative quiescence, and the bur- 
den is on theory not only to provide a sequence of neighbor- 
ing equilibria, but also to account for the time dependence of 
the growth and decay of an event. 

Wang and Bhattacharjee14 (hereafter referred to as WB) 
have investigated analytically the time evolution of the mag- 
netic and velocity fields in a two-dimensional coronal loop 
with an X-type neutral line using the incompressible resistive 
magnetohydrodynamic (MHD) equations. The initial state in 
WB is a vacuum state with a hyperbolic X point, shown 
schematically in Fig. 1. The coronal loop lies in the x-y 
plane, with the footpoints of the magnetic field lines inter- 
secting the photosphere, which is taken to be a plane perpen- 
dicular to the plane of the paper. The separatrices 0[Oj and 
O2O2 cross at O, which is the point of intersection of the 
X-type neutral line with the x-y plane. As this state is driven 
by smooth photospheric footpoint motion, it tends to develop 
current sheets at the separatrices. Using the ideal MHD equa- 
tions, WB derive an exact solution for the linear regime and 
show that the transverse current sheet Jx (i.e., the current 
density perpendicular to £) grows exponentially with time. 
Within a few characteristic Alfven times, the effect of a small 
but finite resistivity slows down the rate of development of 
the current sheet. Subsequently, assuming that the footpoint 
motions at the boundary drive the system to a nonlinear re- 
gime, WB show that J± saturates, and that the longitudinal 
current density Jz grows algebraically with time. 

One of the principal goals of this paper is to test the 
analytical results of WB (and the generalizations thereof, 
given in this paper) by numerical simulation of the full re- 
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FIG. 1. Schematic picture of a two-dimensional coronal loop with an X-type 
neutral line that intersects the x-y plane of the loop at the point O. 

sistive MHD equations, including the effect of plasma com- 
pressibility. The numerical results on the time development 
of the current sheet are found to be in good agreement with 
the analytical predictions, not only in the linear regime 
where the analytical solutions are exact, but also in the non- 
linear regime in which the analytical results are derived from 
some strong assumptions. We also demonstrate that when the 
reconnection dynamics forced by the footpoint motion is he- 
licity conserving,15,16 the X-point structure in the initial state 
transforms to Y points.17 

The following is a plan of this paper. In Sec. II, we 
generalize the analytical solutions of WB based on the in- 
compressible MHD equations, including the effect of viscos- 
ity. In Sec. IE, we discuss numerical results from the fully 
compressible code, and compare these results with the ana- 
lytical predictions of WB. In Sec. IV, we present numerical 
results on the helicity conservation constraint. We conclude 
in Sec. V with a summary and a discussion of the implica- 
tions of our results for observations. 

II. SOME EXACT SOLUTIONS OF INCOMPRESSIBLE 
MHD 

For configurations with translation symmetry along z, 
the magnetic field B can be represented as 

B=zxV<A+Szz, (!) 

where ^ is a flux function. An incompressible flow field v 
with the same symmetry can also be represented as 

v=zxV<£+vzz, (2) 

where <f> is a streamfunction. The 2-D incompressible MHD 
equations for the four dependent variables, Bz, vz, if/, and <f> 
can then be written (in cgs units) as 

4TT 

3D T)C^ 

*+(<p,Bz) = (iP,vz)+ — V2Bz 
dt 

dv. 

dt     x^   z      4-rrp 
— (4,,BZ)+-V2vz, 

r 

dtp Vc      , 

(3) 

(4) 

(5) 

dw 1 v 
— + (0,<B)= — ((M*)+- at cp p 

V2a>, (6) 

where Jz=(c/4-rr) VV is the longitudinal (or z component of 
the) current density, w=V2^> is the z component of the vor- 
ticity, p is the (constant) density of the plasma, and (J,g) 
=z-V/xVg. The initial static equilibrium is taken to be a 
vacuum magnetic field described by 

4/0 = boxy/a, (7) 

where b0 and a are constants, and the origin of the coordi- 
nate system is taken to coincide with point O in Fig. 1. In 
this initial state, /z0=0 and remains so for all times for con- 
tinuous footpoint displacements in the z direction. As shown 
by WB and, more generally here, infinite-time current singu- 
larities develop in the transverse current density J±(=x 3BZI 
dy-y dBzldx) in the ideal limit. 

Equations (l)-(6) can be cast in dimensionless form by 
redefining B/fc0-+B, x/a —»x, t/rA-+t, ift/b0a-^np, 0/vAa-+0, 
and G>TA—►<«), where rA=a/vA and vA=i>0/(4-n-p)1/2 is the Al- 
fven speed. The dimensionless equations are 

dB, 1 
dt- + (<t>,Bz) = (^vz)+-V'Bz, 

d-^ + {<f>,vz) = {<P,Bz)+jV2vz, 

dip 1     , 

dw 1     . 
— + (0,o>) = (^,7z)+-V2o, 

(8) 

(9) 

(10) 

(ID 

where S^TR/^ is the Lundquist number, with TR 

^4Tra2/rjc2, and R = TJTA is the Reynolds number, with 
T=pa2lv. 

It is clear by inspection of Eqs. (5) and (6) that the time 
evolution of tp and (j> is independent of Bz and vz. This is a 
direct consequence of the assumption of incompressibility in 
two dimensions. Therefore, it is possible to solve for Bz and 
vz with fixed ip and cf>, using suitable boundary conditions. In 
the ideal case, WB obtained a simple class of exact solutions 
of these equations. Here we give a general method for ob- 
taining exact, time-dependent solutions of Eqs. (8) and (9), 
including the effects of dissipation in the special case S = R, 
with i/^=^o ^d 4>=(fo=Q- (Note that the initial state in our 
study is a vacuum state that is qualitatively different from the 
stressed initial state considered in Refs. 18-20.) 

Following WB, we define the Elsässer variables f=Bz 

+ vz, g = Bz-vz. Equations (8) and (9) can then be com- 
bined to give 

d±- 
3t' 

df       df     1 / d2f     d2f 
+ ^ 77? + ■ 

dy        dx     S \ dx       dy 

and 

dg dg        dg      1 ld2g 

Tt~~y dy+X dx + S\dx2 + dy2}' 

which can be solved, subject to the initial conditions 

(12) 

(13) 
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Mx,y)=f{x,y,t=0), (14) 

go(x,y)^g(x,y,t=0). (15) 

Note that Eqs. (12) and (13) are linear. We now introduce the 
transformation 

£=\(t)yme'y, 

ff=x/\(f), 

and 

T=l'\2{t')dt' = [^(e2'-l), 

(16) 

(17) 

(18) 

(19) 

whence Eq. (12) becomes 

dF _ 1 / d2F     1   d2F\ 

where F(^,rj,T)=f(x,y,t). Setting 5=°°, we have the ideal 
solution dF/dT=0, which implies that 

F(£,£,T) = F(UJ=0)=MU)=Mye',xe~')- (20) 

Equation (19) can be solved exactly using a Green's 
function. The solution is 

,2 

xexp|- — [(s-?)2+*4(c-n2]]. 

(21) 

which gives 

f^y^2^^ny,dy'Mx'y] 

,f_„M2 Xexpl~2T?^TT[(^'"}'') 

+ ei'(xe-'-x')2]\ (22) 

Equation (22) satisfies the initial condition (14). Equation 
(13), subject to the initial condition (15), can be solved in a 
similar manner. The solution is 

g(x,y,t)-- 2ir(l-e_/') TF, 
Too      Too 

dx' dy' 
J — CO J —00 

go(x'y) 

Xexp 
2(e2'-l) 

+ e*'(ye-<-y')2] 

t-*'\2 [(xe'-x1) 

From the functions / and g, we obtain 

Bz{x,y,t) = yj+g) 

and 

vz{x,y,t) = \{f-g), 

with the initial conditions 

5z(*,y,0) = K/0 + g0) 

(23) 

(24) 

(25) 

(26) 

vz{x,y,0)=i(f0-g0). (27) 

The exact solution obtained by WB from the linearized 
ideal equations is a special case of Eqs. (22) and (23). From 
the linearized resistive equations without viscosity, WB also 
obtained an asymptotic solution for a single Fourier compo- 
nent that holds in the restricted time domain 1 <t<S~1'3. In 
order to compare this asymptotic solution (in its domain of 
validity) with the exact solution obtained here, it will be 
necessary to complete the asymptotic solution by including 
the effect of viscosity and calculate the inverse Fourier- 
Laplace transform, after summing over all Fourier compo- 
nents. Though the methodology is well understood,21'22 there 
seems little point in pursuing it, now that we have the exact 
solutions. 

Given initial conditions (14) and (15), we can easily 
carry out the integrals (22) and (23) (numerically, if neces- 
sary). In the Appendix, we discuss a special example for 
which one can solve Eqs. (12) and (13) analytically in closed 
form. Such exact, self-consistent solutions presented above 
allow us to settle some points of principle regarding the spa- 
tiotemporal structure of current sheets. These solutions are of 
interest because they exhibit current sheets with if/ frozen in 
the initial state (7) for all times, despite the presence of re- 
sistivity. [The resistive diffusion term on the right-hand side 
of Eq. (5) vanishes because 7Z=0, although 7^0.] However, 
these solutions cannot be regarded as generic because they 
are essentially linear for all times and the convective nonlin- 
earities play no role in their evolution. A change in boundary 
conditions (such as the imposition of footpoint motions in 
the x — y plane that direct flows toward the separatrix and 
tend to pile up flux there) or the inclusion of plasma com- 
pressibility, will make these special solutions irrelevant be- 
cause nonlinear reconnection will change qualitatively the 
dynamics of the system. Indeed, it is not difficult to see that 
the exact solutions eventually evolve to a state in which the 
assumption of incompressibility, on which they are predi- 
cated, breaks down. This is because the time-dependent, in- 
compressible solutions with steady ip and <$> must satisfy the 
condition 

V(/? + ß2/2) = 0, (28) 

where p is the plasma pressure. As t—>°°, |VBZ| becomes 
extremely large (infinity, in the ideal limit) at the separatrix, 
and it becomes impossible for the system to adjust to such 
large pressure gradients. Hence, even small departures from 
the incompressibility condition will lead to qualitative 
changes in the magnetic field geometry and flow pattern, and 
violate the condition of frozen-in ip that holds for the exact, 
incompressible solutions. Magnetic reconnection will then 
intervene, changing qualitatively the nonlinear dynamics of 
the system. 

III. COMPRESSIBLE DYNAMICS 

The discussion at the end of Sec. II motivates us to in- 
clude the effect of compressibility on the dynamics of the 
coronal loop. We have developed a computer code for this 
purpose, based on the following system of equations: 
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dp 
- = -V.(p, ). 

d{py) 

et   =-V- 
pv\+[p 

dip               l   . 

Bz 

dB7 1     . 

= -V-(/?v)-(y-l)pV-v. 

(29) 

(30) 

(31) 

(32) 

(33) 

'a' Flux Function 

Here I is the unit dyadic, y(=§) is the ratio of the specific 
heats of the plasma, the variables x, v, t, B, and ip are nor- 
malized to be dimensionless in the same manner as in Sec. II, 
and the pressure p is made dimensionless by scaling it with 
by^TT. 

The initial force-free equilibrium containing an X-type 
neutral line is obtained by solving Laplace's equation 
V20o=O in the whole physical domain as a boundary-value 
problem. The flux function at the bottom boundary is chosen 
to be 

ip0{x,y = 0) 

I" ^o sin[(2>rralL){x0-x)], 
= | ^0 sin[(277a/L)(x0 + x)], 

I 0,    otherwise, 

X i <^X ^XQ > 

— x0<x<— Xi (34) 

where x0 and xl are control parameters, chosen in this simu- 
lation to be equal to 0.7LIa and 0.2L/a, respectively. The 
normalization constant % is chosen to make the dimension- 
less magnetic field B unity on the boundary. The flux func- 
tion is set to zero at the other three boundaries. The initial 
field configuration, which is determined by a numerical so- 
lution of Laplace's equation, is shown in Fig. 2. With the 
initial velocity and Bz set equal to zero, we have a static 
equilibrium. 

Equations (29)-(33) are solved simultaneously using a 
Runge-Kutta finite-differencing scheme that has an accuracy 
of fourth order in time and second order in space. Exploiting 
the symmetry of the initial conditions, the numerical simula- 
tion is carried out in half of the physical domain in the x-y 
plane, with xe (0,1) and y e(0,2). To reduce numerical error 
and save computer time, we employ a nonuniform mesh. 
Nonuniform meshing enables us to increase resolution near 
the separatrix (where the current sheet develops) so that, with 
a 161X241 array, we can resolve 0.002 in x and 0.004 in y. 

At the lateral mirror boundary x=0, dependent physical 
variables G(x,y) are grouped as symmetric, i.e., G(x,y) 
— G(—x,y), or antisymmetric, i.e., G(x,y)= — G(-x,y). 
The fields p,p,vy,ip, and Bz are symmetric, whereas vx and 
vv are antisymmetric. The other lateral boundary x=l as 
well as the upper boundary y = 2 are treated as open, i.e., all 
variables except ^obey the condition dG/dt=0, and ip obeys 
the condition dip/dt = -\-Vip. In order to reduce the ampli- 
tude of waves reflected from the boundary, a damping term is 
applied at the outermost grid points. A three-point differenc- 

>     1 

(b) Flux Function 

>   0.3 

0.3 

FIG. 2. Flux surfaces for a numerically generated vacuum-field solution of 
the 2-D loop, (b) is a magnified picture of the region around the X point in 
(a). This equilibrium solution is the initial condition for the compressible 
simulation. 

ing method is used to calculate the first derivative at the 
boundary, ensuring second-order spatial accuracy. 

The bottom boundary, assumed to simulate the photo- 
sphere, is treated as a material reservoir. All dependent vari- 
ables on this boundary, except Bz and v., are held fixed at 
their initial values. Shearing motion of the footpoints along 
the z axis is prescribed according to the relation 

„   \ 21 

v {x,y = 0,t) = v0 tanh — exp 
Wo/ 

(35) 

where x = x0 is the point at which the separatrix intersects the 
y=0 line. For the case studies discussed below, we have 
chosen v0=0.05, tQ=5, and Ax =0.05. Since distances are 
normalized by a and time by rA, Eq. (35) describes smooth, 
coherent footpoint motions that build up to their maximum 
amplitude on a time scale that is nearly an order of magni- 
tude larger than TA . The field B. is obtained by direct nu- 
merical integration of Eq. (32), with one-sided differencing 
for derivatives with respect to y. 

WB developed an analytical theory for the nonlinear re- 
gime, but they did not discuss the precise mechanisms by 
which the nonlinear regime may be realized. Footpoint mo- 
tions in the x-y plane provide one way to realize the nonlin- 
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FIG. 3. Maximum amplitudes (a) (Jj.)m„ and (b) (J,)max as a function of 
time from the compressible simulation with S=2X105. The dashed line in 
(b) represents the analytically predicted f3 behavior. 

ear regime. Footpoint displacements in the z direction can 
also lead to the nonlinear regime, if plasma compressibility 
is invoked to couple </r and w with Bz and vz. We pursue the 
second possibility here using our compressible code, and find 
that the results of the simulation on the time dependence of 
the current sheet development is in good accord with the 
analytical predictions of WB. 

Figures 3(a) and 3(b) show the maximum amplitudes of 
Jllmax and \J7 respectively,  for a typical run with 

5=2X10 . In the linear arid the early nonlinear phase (up to 
1=25), the growth occurs primarily in J± near the separatrix. 
In the linear phase, this growth is exponential in time, as 

shown by WB, and confirmed by the numerical results. Sub- 
sequently, due to the dynamical coupling caused by finite 
plasma compressibility, the system enters a nonlinear phase 
in which Jx decays and saturates, while Jz grows algebra- 
ically in time to large values near the separatrix. WB pre- 
dicted that this growth can be described by the relation 
^~(S~1/204, which implies that 

V-77-1/2(f/TSP)3, 
\l/2 ; 

(36) 

where TSP=(rATs)
iri is the characteristic Sweet-Parker time 

scale.23 The dashed line in Fig. 3(b) is the analytically pre- 
dicted /3 behavior. 

Figures 4(a) and 4(b) show the contour plots of Jz and ip 
at ; = 80, respectively, for the run described in Fig. 3. Note 
the strong concentration of current density near the separa- 
trix. The initial X-point structure of the separatrix has been 
altered to form Y points. This type of behavior has also been 
seen in the incompressible simulations of Biskamp23 in a 
different geometry (with different boundary conditions). As 
explained in Sec. II, in the present geometry (Fig. 1) and 
with the boundary conditions (35), compressibility is crucial 
because it provides a mechanism for changing t// by diffu- 
sion. Compressibility is known to play a similar role in nu- 
merical studies of magnetic arcade evolution (see, for in- 
stance, Biskamp and Welter24 and other references therein). 

IV. HELICITY-CONSERVING RECONNECTION AND Y 
POINTS 

It has been suggested by Syrovatsky17 that current sheets 
will be formed along Y points in a 2-D, quasi-ideal, quasis- 
tatic plasma. (Interested readers will find a picture of Y 
points in the earlier work of Sweet,25 who seems to have 
been aware of, but did not prove, the possibility of Y points 

Current J7 

Y 0.35 

Flux Function 

0.2      0-20 
0.10 -0.10 0.10 

(a) (b) 

FIG. 4. Contour plots of (a) Jt and (b) ^ at t=80 for the compressible simulation with 5=2X105. Note the strong current sheet at the separatrix. The initial 
X-point structure, seen in Fig. 2, has changed to Y points. 
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-0.0004 

-0.014 

FIG. 5. Time rate of resistive decay of (a) magnetic helicity K and (b) 
magnetic energy Em for the compressible simulation with S=2X105. The 
rate of dissipation of energy is larger than that of helicity by nearly two 
orders of magnitude. The dashed line in (b) represents dKldt. 

in his steady-state reconnection model.) Further generaliza- 
tions and refinements of Syrovatskii's 2-D results, derived 
using complex variable theory, have been given in Refs. 23 
and 26-29. Although Syrovatskii's model is not fully self- 
consistent, its essential features have been confirmed by sev- 
eral self-consistent simulations in the regime of high Lund- 

, 23 29-31 quist numbers.   ' 
Here we present numerical evidence that helicity- 

conserving reconnection leads to the formation of Y points in 
2-D coronal loops. It should be emphasized that helicity is 
not an exact invariant in the presence of diffusion, and so 
helicity-conserving reconnection refers to dynamics that con- 
serves helicity much better than energy. It is also important 
to note that here we are considering a stronger form of the 
helicity conservation constraint than used by Taylor.32 Taylor 
has discussed the self-organization of a strongly turbulent 
plasma in which it is not physically meaningful to speak of 
the topological identity of individual flux tubes. In a strongly 
turbulent system, Taylor has predicted that the total magnetic 
helicity is approximately conserved while the total magnetic 
energy decays rapidly. In contrast, what we have in mind is a 
much stronger form of the helicity conservation constraint, 
considered by Kadomtsev33 and Bhattacharjee et a/.,34 who 
treat an unstable (but nonturbulent) plasma with well-defined 
magnetic surfaces nearly everywhere, in which magnetic he- 
licity is conserved during "nonconstant-i/f" reconnection. 
Since there are, in principle, an infinite number of flux tubes 
in a plasma with good surfaces, there are an infinite number 
of constraints, whereas the Taylor relaxation theory keeps 
only one global constraint.34 Using the form of the helicity 

conservation constraint developed in Refs. 33 and 34, and 
building on the mathematical framework developed by 
Rosenbluth et a/.,35 Waelbroeck15 has shown that Y points 
develop in the nonlinear stage of a kink-tearing instabi- 
lity. Bhattacharjee and Wang16 have adapted Waelbroeck's 
method to a "long-thin" coronal tube and shown that current 
sheets develop along the separatrix spanning Y points. [The 
"long-thin" approximation is motivated by the fact that 
coronal loops with very large aspect ratios (~102) are not 
uncommon.36 The advantage of the approximation is that it 
makes the problem essentially two dimensional. Further- 
more, the equilibrium is topologically sufficiently simple that 
it is possible to carry through an analytical calculation in- 
volving the helicity conservation constraint. However, such a 
calculation cannot be applied to all coronal tubes, because 
the simple notion of a 2-D separatrix does not carry over to a 
three-dimensional tube of finite length.] 

In the present context, the law of helicity conservation 
means that the integral, 

-\ 
AB dx dy, (37) 

is (approximately) conserved for reconnecting flux tubes. 
Here dx dy is the infinitesimal element of area in a section 
of a flux tube, bounded by two neighboring surfaces. It is 
easy to show that this is equivalent to the conservation of 
Jdl/B for reconnecting flux tubes. Though simple in prin- 
ciple, it is difficult in practice to calculate K analytically for 
the complicated loop configurations of the type considered in 
this paper. It is easier to calculate the rate of resistive decay 
of helicity (and energy), because the dominant effect of re- 

0.00 ' 
(b) 

•a \ v - ^                               ~~ ~~ 
£ 
■o 
r -0.05 \          /                         ^^-— - 
:p ^ 
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-0.10 1                                       ' i 

20 40 
time 
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FIG. 6. Time rate of resistive decay of (a) magnetic helicity K and (b) 
magnetic energy Em for the compressible simulation with S=103. The rate 
of dissipation of energy is comparable with that of helicity. The dashed line 
in (b) represents dKldt. 
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FIG. 7. Contour plots of (a) Jz and (b) ip at r=80 for the compressible simulation with 5 = 103. The amplitude of the current sheet is smaller, and it is less 
localized than it is in Fig. 4. The Y points are not well formed. 

sistivity is localized near the separatrix where reconnection 
occurs. In Fig. 5, we show dKldt and dEJdt (where 
Em=fdx dy B2/2) for the computer runs described in Figs. 
3 and 4, with S=2X 105. The integrals are taken over a rect- 
angular box that encompasses the reconnection layer. 
Though the magnetic helicity is not a constant [as indicated 
by the temporal variation in Fig. 5(a)], the change in helicity 
is approximately two orders of magnitude smaller than the 
change (loss) of energy. Hence, helicity can be regarded as 
approximately constant on the time scale magnetic energy 

-? 0.2 

0 20 40 60 80 

0.04 

-r 0.02 

0.00 

FIG. 8. Maximum amplitudes (a) (Jx)max and (b) (J^^ as a function of 
time from the compressible simulation with 5= 103. The dashed line in (b) is 
an approximate fit and shows (JJ^ increasing linearly with time. 

decays. The numerical evidence supports the basic theoreti- 
cal claim14"16 that Y points are formed in helicity-conserving 
reconnection. 

It is interesting to contrast the results of Fig. 5 with Fig. 
6, which begins with the same initial condition, but uses a 
much lower value of S(= 103). In the latter case, the rates of 
resistive decay of helicity and energy are comparable, and 
helicity cannot be regarded as a good invariant while energy 
decays. Figure 7 shows the contour plots of ijj and Jz in this 
case, and it is obvious by inspection that the dynamics does 
not yield Y points. The current sheet Jt is also much weaker 
and spread out over a much broader diffusion layer. Figures 
8(a) and 8(b) show the time evolution of Jx and Jz, respec- 
tively. The system evolves into the nonlinear phase very 
quickly, and the nonlinear growth of Jz is approximately lin- 
ear in time (dashed curve), which is at variance with the 
analytical predictions and the numerical results given in Fig. 
3. This underscores an issue that is central to discussions of 
current sheets and magnetic reconnection: low-5 simulations 
(=£103) generally exhibit such large differences from high-5 
simulations (s=105) and analytical theories that it is difficult 
to extrapolate quantitative scalings obtained from low-5 
simulations to the high-5 regimes that are believed to be 
observationally relevant for the solar corona. 

V. SUMMARY AND DISCUSSIONS 

The results of this paper, when combined with those ob- 
tained earlier by Wang and Bhattacharjee,14 provide a de- 
tailed description of the dynamics of current sheet formation 
in a two-dimensional coronal loop with an X-type neutral 
line. The emphasis in Ref. 14, as well as the present paper, is 
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on the precise time history of current sheets in such a loop 
beginning from a vacuum field, driven by smooth photo- 
spheric footpoint motion. 

For compressible plasmas, we have presented numerical 
results on current sheet development in the linear and non- 
linear stages of the dynamics. In the linear regime, on ideal 
time scales, current sheets tend to grow exponentially in Jx . 
This linear, ideal regime is followed by a short-lived linear, 
resistive regime before the system passes into the nonlinear 
regime on the characteristic Sweet-Parker time scale 
(TATR) . In the early nonlinear regime, Jx saturates while 
decays Jz begins to grow. The growth in Jz is algebraic in 
time, proportional to r3, predicted by the analytical theory of 
WB and confirmed here by numerical solutions. It is found 
that the X-point structure of the separatrix in the initial state 
changes to Y points in helicity-conserving reconnection, as 
predicted by theory in the high-S regime.14-16 

It is worthwhile to reflect on the physical significance of 
these results, and what they imply for observations. For 
smooth initial conditions, all the current singularities we find 
are infinite-time singularities in the ideal limit. At least in the 
context of the present geometry, this should put to rest the 
question as to whether a true current singularity can be seen 
in ideal simulations by extrapolating to zero mesh size. As 
discussed in Ref. 14, the answer is no, because current sin- 
gularities do not occur in finite time, even in the absence of 
dissipation. The current sheet keeps growing until it attains 
an amplitude large enough that the effect of diffusion has to 
be included as an essential part of the dynamics. It is inter- 
esting to note that the current sheet Jz, which actually owes 
its growth to the presence of diffusion and magnetic recon- 
nection, ends up throttling the nonlinear reconnection dy- 
namics to yield algebraic growth in time. 

From the point of view of observations, there are several 
issues that need to be considered. It is clear that current 
sheets of the type considered here can produce significant 
coronal heating. Simple estimates, assuming that such sheets 
have a filling factor of the order unity, have been given in 
Ref. 14 and indicate that the heating produced can account 
for quiet loops and some, but not all, active loops. Direct 
observational tests of the validity of current sheet models, as 
discussed in considerable depth by Parker in his recent 
monograph,11 involve several features that are beyond the 
scope of present-day observational techniques. The small 
spatial scales of current sheets are well below the spatial 
resolution of the state of the art instruments. One has to rely, 
therefore, on the integrated effect of numerous transient 
events as it affects a measurable quantity, but the interpreta- 
tion of the latter is often subject to the uncertainties inherent 
in the various transport processes in the corona.37 For ex- 
ample, assuming that the corona is made up of many hundred 
loops that are heated by nanoflares, Cargill38 has developed a 
model to determine the dependence of the emission measure 
on temperature and established good correspondence with 
observations at temperatures in the range (105-106) K. But 
the modeling of the emission measure depends on parallel 
heat conduction, regarding which there are major uncertain- 
ties. In view of all this, as Cargill himself points out, one 
cannot regard agreement with emission measures in a re- 

stricted temperature range, as sufficient evidence to rule ex- 
clusively in favor of current sheet models, but it is a mini- 
mum requirement that any heating mechanism should satisfy. 
For a comparative discussion of the various heating mecha- 
nisms and how they measure up against observations, the 
reader is referred to the recent review by Cargill,39 who has 
also given an extensive bibliography. 

Some of the more effective diagnostics for nonlinear re- 
connection theories are the observations on the temporal 
variation of hard x-ray emission (>10 keV). Hard x rays are 
a reliable signature of prompt electrons, and if one assumes 
that MHD activity causes the acceleration of electrons, then 
one can look at the temporal variation of the x-ray emission 
as a qualitative predictor of the time dependence of the elec- 
tric field generated by reconnection. Such data is abundant 
from solar flares,40 much less so for microflares,41 and non- 
existent for nanoflares. However, if we proceed on the tenta- 
tive premise that reconnection phenomena of different de- 
grees of virulence are responsible for the various types of 
flares, then one can hope to identify certain patterns in the 
time dependence of the x-ray emission, even if they corre- 
spond to events that differ vastly in the amount of energy 
liberated. [It is the amount of energy liberated that distin- 
guishes a typical flare (~-1033 ergs) from a typical microflare 
(~10    ergs) and a typical nanoflare (~1024 ergs).] For in- 
stance, it is well known that in a typical flare, the time de- 
pendence of the hard x-ray emission exhibits an impulsive 
phase in which the emission exhibits a sudden transition in 
time from the slower growth phase. There is a similar trend 
in the data on microflares40 that exhibit x-ray spikes, each of 
which one may assume is due to an individual reconnection 
event. ' If we accept this sudden onset as a recurrent pattern, 
then the burden is on reconnection theories to account, not 
only for the rapidity of the impulsive phase, but the time 
development of the entire process, which includes the sudden 
transition to the impulsive phase. This is where nonlinear 
reconnection models,  such as  the  one discussed in the 
present paper, run into difficulties, because in such models 
the reconnection dynamics passes from a linear exponential 
phase to an algebraic phase in time, and this is too qualita- 
tively gradual to account for the sudden change in the time 
derivative of the emission profile, as the impulsive phase is 
triggered. It is possible that this discrepancy may be cured by 
considering a different class of boundary conditions at the 
photosphere or by going beyond the resistive MHD model to 
include other collisionless effects in a generalized Ohm's 
law. In the context of the analogous problem of sawtooth 
trigger in tokamaks, Wang and Bhattacharjee42 have recently 
shown that electron pressure gradient effects (in a general- 
ized Ohm's law) can change the algebraic growth rates from 
nonlinear resistive MHD model to near-explosive growth. 
The exploration of this effect, as well as the dependencies on 
other types of footpoint motions on the boundary, is left to 
future work. 
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APPENDIX: SOME EXACT INCOMPRESSIBLE 
SOLUTIONS 

We consider some exact solutions of Eqs. (22) and (23). 
We take 

Bt(x,y,t = 0)=vl(x,y,t = 0) = B0et^-k(y + y0)], 
(Al) 

where erf denotes the error function, and B0, k, and y0 are 
constants, with k, y0>0. In particular, we choose ky0>l, so 
that the initial perturbation of the separatrix is very small. 
The initial condition (Al) yields the exact, time-dependent 
solution, 

Bz{x,y,t) = vz{x,y,t) 

ke'(y + y0e-') 

"ß°erfi     [l+(2k2/S)(e2l-D] 

The transverse current density is given by 

1/2 (A2) 

2ßn 
Jx=-^= 

ke' 

Xexp 

^[l+(2k2/S)(e2<~l)y12 

[ke'iy + yoe-')]2 \ 
(A3) 

l+(2k2/S)(e2'-\)j 

For t<{$)\n(S/2k2), we obtain the ideal solution, 

Bz(x,y,t)=vz(x,y,t)=B0 erf[-£e'(v +v0e~')],    (A4) 

with the transverse current density 

2kB0e' 

\JTT 
exp[-k2e2'(y + y0e-'y]x. (A5) 

The right-hand side of Eq. (A5) tends to a 8 function as 
t—+°°. In other words, a current sheet is an infinite-time sin- 
gularity of Eqs. (8)-(ll) in the ideal limit. 

For f>01n(S/2&2), in the limit of large S, Eqs. (A3) 
and (A4) yield 

BZ = BQ erf (v + v0e"') 

and 

Ji = 
25 

77 
B0 exp (y+yQe'ir x, 

(A6) 

(A7) 

respectively. As f—>=°, Eqs. (A5) and (A6) describe a steady 
state in which there is a saturated current sheet at the sepa- 
ratrix, with an amplitude that increases as Sm and a width 
that shrinks as S~m. 

For the general case S¥=R, although we have not found 
an exact, time-dependent solution, it can be shown that there 
exists a quasistationary solution to which the system may 
relax as r—>=°. If the viscosity and resistivity are unequal, the 
equations for B, and vz are given, respectively, by 

' d2B7 dB, dv7 

dt     y dy 

dvz 

~dx 

1 

and 

dt 

dB, 
~-y T±

~
X 

dy 

dBz     1 

~dx~    R 

dx1 

d2vz 

~dxT 

d2Bz 

d\ 

dy2 

(A8) 

(A9) 

O ,\.0 

FIG. 9. The growth of a current sheet J± in an incompressible, resistive 
plasma without «connection from the smooth initial condition (Al), with 
S = R= 104. The current profile saturates as r—>c°. 

respectively. We investigate quasistationary solutions of Eqs. 
(A8) and (A9) in the limit t—>oo. Setting dBz/dt = dvz/dt = 0, 
and defining B'^BJk, where k is a constant, we obtain 

y -—x 
dy 

dvz     k 

dx      S 

d2B'      d2B'\ 

dxz 
dy' 

and 

dB'       dB'      1 
X!x~+k~R 

d2^ 

dx2 ■ + 
d2v, 

1=0. 

(A10) 

(All) 
dy    "   dx   ' kR\ dx£   '   dy2, 

In order to make Eqs. (A10) and (All) symmetric, we 

choose k=4siR. Defining new Elsässer variables, f'=B' 
+ vz and g' = B' — vz, we obtain the quasistationary solu- 
tions, 

g' = 0 

and 

f' = B0 1+erf 
2k 

Equations (A12) and (A 13) yield 

B, = -r \h:\ 1+erfl - 
SR 1/4 

V 

(A12) 

(A13) 

(A 14) 

which corresponds to a transverse current sheet with an am- 
plitude directly proportional to (S3/#)1/4 and a width in- 
versely proportional to (Si?)1/4. 

We have developed a computer code that integrates Eqs. 
(8)-(ll). This provides a check for the exact analytical so- 
lutions in the case S = R, and also determines the time devel- 
opment of the solutions in the cases S^R, which break the 
symmetry of Eqs. (12) and (13). In Fig. 9, we show the 
growth of the current sheet from the smooth initial state (Al) 
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FIG. 10. (a) Comparison of the numerical (dashed line) and analytical (solid 
line) results for {JJa^ as a function of time, with S = R = 104. (b) Numeri- 
cal results for (JJ,^ in three cases: 5 = 10*, #=5X103(—); S = 104, 
/?=2X104(---); and S = 104, /?==(•••). compared with the exact analytical 
solution (solid line) for S = R = 104, presented in Figs. 9 and (a). 

to saturation for a case with S = R. In Fig. 10(a), we show 
that the numerical (dashed line) and analytical (solid line) 
results for the maximum transverse current density amplitude 
(iJiLax) ^ in 8ood agreement for the parameters of Fig. 9. 
In Fig. 10(b), we present the numerical solutions for |jjmax 

in three cases with Si=R, and compare them with the ana- 
lytical result of Fig. 10(a). As may be expected, the time 
development in Fig. 10(b) does deviate from the exact ana- 
lytical prediction for S = R, and especially so for the case of 
zero viscosity. In the presence of viscosity, the mechanical 
oscillations are gradually damped, and the system tends to a 
quasistationary state. 
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Role of photospheric footpoint shear in the impulsive 
dynamics of the solar corona 
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Abstract. A frequently observed feature of a solar 
flare is its impulsive growth from a relatively quies- 
cent background. This imposes a significant constraint 
on magnetic reconnection models which propose to ac- 
count for flares: not only should the time scale be fast, 
but it must also exhibit an impulsive character. It is 
shown that the spatial width of the shearing motion 
of the photospheric footpoints has a significant quali- 
tative effect on the time-evolution of the current sheet 
and the reconnection electric field in a two-dimensional 
coronal loop with a neutral line. The reconnection dy- 
namics for localized footpoint shear profiles does not 
show an impulsive phase and occurs on a Sweet-Parker 
time scale (~ r]~ll2), whereas the reconnection dynam- 
ics with broad shear profiles occurs on a faster time scale 
with a weaker dependence on the resistivity (~ 77-1/5), 
and furthermore, exhibits an impulsive phase due to 
flux pile-up near the reconnection layer. 

Magnetic reconnection is frequently invoked as a pos- 
sible mechanism for several observed features of coronal 
dynamics. It can cause a major rearrangement of mag- 
netic topology and unleash a large reservoir of magnetic 
free energy that can be converted to thermal and bulk 
kinetic energy. The electric fields generated during re- 
connection can, in principle, accelerate particles to high 
energies. These attributes of magnetic reconnection are 
so appealing that we often invoke it as a panacea for 
several ill-understood problems of coronal dynamics. 

Magnetic reconnection is often involved in the dy- 
namical realization of intense concentrations of current 
density, called "current sheets." Parker [1972] proposed 
that such current sheets, which can grow from a smooth 
initial state (such as a vacuum magnetic field) due to 
shearing motions of the photospheric footpoints, can 
be an effective mechanism for coronal heating. Small 
events that produce current sheets and release energy 
(~ 1017 J) are classified as nanoflares. Current sheets 
are not only a defining feature of nanoflares, but are 
also expected to occur in the high-Lundquist-number 
corona during the development of microflares and flares 
if magnetic reconnection is the underlying mechanism 
liberating large amounts of energy (~ 1020 J for mi- 
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croflares and 1026 J for flares). Hence, the temporal 
development of current sheets (and the associated re- 
connection electric field) in a coronal loop has to be 
understood at a fundamental level before one can claim 
to have a correct time-dependent theory for flares. 

Observations provide some strong constraints on pos- 
sible theoretical mechanisms for flares. (See, for in- 
stance, the monograph by Tandberg-Haussen and Em- 
slit [1988] and other references therein.) We empha- 
size two important temporal signatures that a theory 
of flares must reproduce. The first signature is a time 
scale fast enough to account for the rapidity of flaring, 
and the second, more subtle, feature is the time devel- 
opment of the process which typically (but not always) 
exhibits an impulsive character. 

The main thrust of this paper is to present simulation 
studies of two-dimensional coronal loops in the high- 
Lundquist-number regime, elucidating the role that the 
shearing motion of the photospheric footpoints can 
play in realizing the two temporal signatures discussed 
above. We find that current sheets (and reconnection 
electric fields) that exhibit both of these features can, 
in principle, be obtained if the footpoints on the photo- 
sphere are driven by a sheared velocity profile of broad 
spatial extent that can cause flux pile-up [Deluca and 
Craig, 1992; Wang et al., 1996] near the reconnection 
layer. However, if the sheared velocity profile is nar- 
row and does not cause flux pile-up, the current sheet 
amplitude (and the reconnection electric field) in the 
nonlinear regime increases gradually (and algebraically) 
with time on a characteristic Sweet-Parker time scale 
(~ r]~ll2), without showing a transition to a fast, im- 
pulsive phase. 

To fix ideas, we consider a two-dimensional coronal 
loop with an X-type neutral line where current sheets 
can be realized by imposing footpoint displacements 
[Low and Wolfson, 1988; Jensen, 1989; Karpen et al, 
1990; Finn and Lau, 1991; Vekstein, Priest, and Amari, 
1992; Wang and Bhattacharjee, 1994]. The temporal 
growth of current sheets in this geometry has been in- 
vestigated in some depth by Wang and Bhattacharjee 
[1994] and Ma et al. [1995]. Figure 1 describes a coronal 
configuration in the x - y plane, with the footpoints of 
the magnetic field intersecting the photosphere which 
is taken to be a plane perpendicular to the plane of 
the paper. For the class of footpoint displacements 
considered by Ma et al., the current density Jz grows 
as t3, consistent with the analytical prediction in the 
high-Lundquist-number regime [Wang and Bhattachar- 
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Figure 1. (a) Flux surfaces for a numerically generated 
force-free solution of the 2-D loop, (b) is a magnified 
picture of the region around the X-point in (a). 

jee, 1994]. The reconnection dynamics in this simula- 
tion passes from a linear exponential phase to an alge- 
braic phase in time, and this is too qualitatively grad- 
ual to account for the impulsive phase observed during 
a microfiare or a flare. 

In the present paper, we present numerical results 
from a two-dimensional, compressible, high-Lundquist- 
number simulation of the solar corona that go beyond 
the results reported by Ma et al. and bring the theory a 
step closer to the temporal signatures suggested by the 
observations. We assume the resistivity to be constant, 
without an ad hoc current-dependent or spatially local- 
ized enhancement factor. We integrate numerically the 
compressible resistive MHD equations using a Runge- 
Kutta finite-differencing scheme that has an accuracy 
of fourth-order both in time and space [Ma and Bhat- 
tacharjee, 1996]. Exploiting the symmetry of the initial 
conditions, we carry out the numerical simulation in 
half of the physical domain in the x — y plane, with 
x £ (0,1)a and y £ (0, 2)a, where a is the character- 
istic system size. (A representative number for a is 
50,000 km.) With a 181 x 221 array and a nonuni- 
form grid, we are thus able to resolve 0.002a in x and 
0.003a in y near the separatrix where the current sheet 
develops. The initial force-free equilibrium containing 
an X-type neutral line, shown in Figure 1, is obtained 
by solving Laplace's equation for a potential field in the 
whole physical domain as a boundary-value problem. 

At the bottom boundary which represents the pho- 
tosphere, we impose shearing motion of the footpoints 
according to the relation, 

vz(x,y = 0,i) VQ tanh( — exp 
x0 

(1) 

where to is a rapid "turn-on" time, x = x0 is the point 
at which the outer separatrix intersects the z-axis in the 
simulation box (which is half of the physical domain), 
and Ax characterizes the spatial extent of the sheared 
profile. At the lateral boundary x = 0, we use symmet- 
ric as well as anti-symmetric boundary conditions for 
vz. In the symmetric case, we impose footpoint veloci- 
ties at the two points of intersection of the outer sepa- 
ratrix, either both out of the (x — y) plane or both into 
the plane. (The inner separatrix is left unperturbed.) 
For the anti-symmetric case, the footpoint velocities at 
the two points of intersection of the outer separatrix are 
in opposite directions, with one footpoint moving out of 
the plane and the other moving into plane (also studied 
by Ma et al.) We find that the time-history for Jz is 
nearly the same for both types of boundary conditions. 
In the present paper, we only show the results for the 
symmetric case. 

Localized Footpoint Shear and the 
Absence of an Impulsive Phase 

Wang and Bhattacharjee [1994] show, by using a vari- 
ant of the Sweet-Parker model, that in the nonlinear 
regime the current density Jz grows algebraically in 
time according to the relation, 

1/2/ Jz £ Jw-V'it/T, ■sP)3 ; (2) 

where Jo is a constant independent ofrj, rsp = (T^TR)
1
/
2 

is the characteristic Sweet-Parker time scale, TA is the 
characteristic Alfven time scale, and TR is the resis- 
tive diffusion time scale. In Figure 2, the dotted line 
indicates the time-evolution of the maximum ampli- 
tude of Jz at the separatrix in our simulation with 
S = TR/TA = 105, and a localized footpoint shear pro- 
file with Aa; = 0.04a. The dashed line represents the 
nonlinear analytical prediction given by equation (2). 

We note that the growth of current sheets (or the re- 
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Figure 2. Maximum amplitudes (Jz) for localized 
shear profile (dotted line) and broad shear profile (solid 
line) as a function of time. The dashed line represents 
the analytically predicted t3 behavior. 



connection electric field) in this case is gradual through- 
out the nonlinear regime, and shows no impulsive phase. 
This gradual nature is also evident in the dotted line 
plot of Figure 3 in which the growth rate dlnJz/dt is 
seen to decrease monotonically. 

Broad Footpoint Shear and an 
Impulsive Phase 

We now present numerical results with the same 
initial conditions as discussed above, except for the 
sheared footpoint velocity profile which is taken to be 
much broader, with Ax = 0.16a. (Ax ~ 8000 km.) 
The broader velocity profile implies simply that a larger 
bunch of field-lines are perturbed, and that the magni- 
tude of the magnetic flux convected inwards from the 
boundary towards the separatrix is larger, causing flux 
pile-up. 

Our recent analytical as well as numerical results 
[Wang et al., 1996] for flux pile-up in the Harris sheet 
with inward boundary flows are relevant for the present 
simulations, and can be summarized as follows. The 
peak amplitude of the current sheet (and the reconnec- 
tion electric field) in the Harris sheet exhibits a sud- 
den transition from a sluggish linear growth phase to 
a rapid nonlinear phase in a characteristic time scale 
i~N = (T-flTorj)1/5, where rQ is the characteristic time 
scale of the imposed boundary flow. It should be 
noted that the new characteristic time scale TN has 
a much weaker dependence on resistivity (~ r?-1/5) 
than the characteristic time scale in the Sweet-Parker 
model (~ r?_1/2).] Furthermore, the current sheet am- 
plitude at the separatrix grows as Jo(t/rA)2 in the lin- 
ear regime, and as (TR/T0y/2J0(t/TA)

3/2 in the nonlin- 
ear regime, where J0 is a constant, independent of ??. 
The large multiplicative factor (TR/T0)

1
/
2
 accounts for 

the suddenness in the enhancement of the current sheet 
amplitude in the nonlinear regime following a period of 
slower growth. 

The loop geometry of the initial state in our present 
simulation makes a precise analytical treatment in the 
nonlinear regime difficult. However, the initial X-point 
structure stretches to form Y-points in the nonlinear 
regime, and resembles qualitatively the geometry real- 
ized in our Harris sheet studies. The time evolution 
of the maximum amplitude of the current density Jz 
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Figure 3. Time evolution of the growth rates of current 
sheets for localized shear profile (dotted line) and broad 
shear profile (solid line). 

Figure 4. Time evolution of the scaled current 
rj1/2Jzmax for 77 = 10-5 (solid line), 2 x 10~5 (dotted 
line), and 4 x 10~5 (dashed line). The dashed-dotted 
line represents the analytical result. 

(which is localized where B±[= (B2 + B2)1'2] vanishes) 
is shown in Figure 2 (solid line). We find impulsive 
intensification of the current sheet amplitude at about 
t = 20^. (This impulsive intensification occurs for 
both Jz and JL, but we only show the plot for Jz.) 
The impulsive enhancement in the time-evolution of the 
current density Jz (as well as the reconnection electric 
field £j| = E • B/B which is equal to Ez if B± = 0) is 
evident by contrasting the dotted and solid line plots 
in Figure 3 for the growth rates d\nJz/dt in the two 
cases of localized (Ax = 0.04) and broad (Aar = 0.16) 
footpoint shear, respectively. 

In the case of broad shear, we conduct two additional 
runs with 77 = 4 x lO-5 and 2 x 10~5. Wang et al. 
[1996] obtain the analytic expression for the nonlinear 
reconnected flux 1? ~ (i/77-1/5)5/2 which implies that 
the reconnection rate scales as 77-1/5, much faster than 
the Sweet-Parker rate. From this analytic expression, 
we obtain the nonlinear current sheet amplitude Jz ~ 
7?-i/2f3/2_ As shown in Figure 4, our numerical results 
on the dependence of the current sheet amplitude (as 
well as the reconnection rate) on resistivity and time 
are consistent with the analytical results of Wang et al. 
despite the differences in geometry. 

In Figure 5 (a)-(c), we show plots of the current sheet 
amplitude Jz and the flux function for 5 = 105 at three 
instants of time (t = 10,20,30rA).  Note the evolution 
in the geometric features of the initial state, as the ini- 
tial X-point structure is altered to form Y-points [Sy- 
rovatsky, 1971] which is a generic feature of reconnec- 
tion in the high-Lundquist-number regime. (See Ma et 
al. for a further discussion of this point.) This geometric 
change is accompanied by a strong intensification of the 
current density which is distributed nonuniformly along 
the separatrix.  (We draw the readers attention to the 
renormalization of the color scales in Figures 5(a)-(c).) 

Even though we have not simulated realistic flare dy- 
namics, the present results have significant qualitative 
implications for flare phenomena when magnetic recon- 
nection is the underlying mechanism. We have demon- 
strated here that the nonlinear temporal dynamics of 
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Figure 5. Image plots of the current and contour plots 
of flux function at t = 10, 20, and 30 for a broad shear 
profile with S = 105. The initial X-point geometry 
is altered to form Y-points as the current density is 
intensified. (Note the renormalization of the color scales 
in (a)-(c).) 

current sheets (and the reconnection electric field) can 
be either gradual or impulsive depending on the spa- 
tial extent of the sheared velocity profiles of the foot- 
points. We remark that the impulsive enhancement 
of the current density is primarily due to the broad 
extent of the footpoint shear profile and not due to 
the plasma ß; runs with the same boundary conditions 
but differing values of the plasma ß (over the range 
~ 1 — 10%) show some quantitative but no qualitative 
differences. Collisionless effects in a generalized Ohm's 
law, discussed elsewhere [Ma and Bhattacharjee, 1996], 
can make the reconnection dynamics even more impul- 

sive. There is substantial observational evidence that 
flares are strongly correlated with regions of pronounced 
velocity and magnetic field shear in the photosphere. 
(See, for instance, Tandberg-Hanssen and Emslie [1988], 
pp. 141-144 and other references therein.) We hope 
that the results of the present study will prompt a closer 
look at the data to determine the correlation between 
the time-development of flares and the spatial extent of 
the shear profiles. 
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ABSTRACT 

It is shown that the requirements of self-consistency constrain the functional form of the turbulent dynamo 
field in an incompressible plasma. These requirements involve the back-reaction of the magnetic field through 
the Lorentz force in the momentum equation and the conservation laws of magnetohydrodynamic turbulence. 
The dynamo field is calculated in the weak-field limit when the turbulence is isotropic, as well as in the 
strong-field limit when the turbulence is anisotropic. For magnetic fields of a nontrivial topology, it is shown 
that the results of kinematic dynamo theory are strongly modified by the production of hyperresistivity (in the 
mean-field induction equation) which is left as a remnant after a near-cancellation between the alpha and beta 
effects. An interpolation formula for alpha quenching, encompassing weak-field and strong-field regimes, is 
proposed. 
Subject headings: MHD — plasmas — turbulence 

1.   INTRODUCTION 

The dynamo effect has been invoked as a mechanism for the 
generation and sustainment of astrophysical magnetic fields. 
The most well-developed branch of dynamo theory is the kine- 
matic dynamo theory, which has been comprehensively dis- 
cussed in several existing monographs (Moffatt 1978; Parker 
1979; Krause & Rädler 1980; Zeldovich, Ruzmaikin, & Sokol- 
off 1983). Kinematic dynamo theory is essentially concerned 
with the question of growth (or decay) of a magnetic field B, 
given a velocity field v. The magnetic field is assumed to obey 
the induction equation of resistive magnetohydrodynamics 
(MHD), 

fluctuation: 

dB 
— = V x (v x B) + r]V2B . 
ot 

(1) 

where r\ is the resistivity of the conducting field. In turbulent 
systems, we can separate the variables B and v into an averaged 
part and a fluctuation, i.e., 

B = (B) + ÖB = B0 + SB . 

V = (v) + ÖV = »0 + Sv , 

(2a) 

(2b) 

where (SB} = (Sv} = 0. The angle brackets represent either 
an ensemble average or an average over the small-space and 
fast-time scales of the fluctuations. Averaging equation (1), we 
obtain 

eBo 
ct 

where 

= V x (»0 x B0) + V x S + nV2B0 , 

S = (Sv x SB) 

(3) 

(4) 

is the turbulent dynamo field. Subtracting equation (3) from 
equation (1). we obtain an exact equation for the magnetic field 

1 Permanent Address: Department of Applied  Physics. Columbia  Uni- 
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8t 
ÖB = V x (»0 x SB + Sv x B0) + rjW2SB 

+ [V x (Sv x ÖB) - (Sv x <5£>] .    (5) 

In the "first-order smoothing" or "quasi-linear" approxima- 
tion, the term in brackets on the right-hand side of equation (5) 
is neglected. The advantage of making this approximation is 
that it yields a linear equation for the fluctuation ÖB, i.e., 

8t 
ÖB = V x (»0 x ÖB + Sv x B0) + rjV2SB . (6) 

Equation (6) can be easily inverted to give SB. If v0 is a con- 
stant, then it can be eliminated by a Galilean transformation. 
For turbulence that is isotropic but not reflectionally sym- 
metric, one then obtains from equation (4) the well-known 
result (Moffatt 1978; Parker 1979; Krause & Rädler 1980; 
Zeldovich et al. 1983) 

ß0J0 

where 

a0 = - - (Sv • Sea} 

/?o = 3<l<5»l2>, 

(7) 

(8) 

(9) 

and T is an approximate eddy correlation time. Whereas the 
a0-effect can amplify a seed magnetic field, the /?0-effect 
enhances the diffusion rate, typically to values much larger 
than that due to the classical resistivity n. The violation of 
mirror symmetry, a requirement for the a0-effect, can occur 
due to the effects of natural cyclonic and nonuniform rotation 
on both small and large scales. If v0 is not spatially uniform, it 
cannot be eliminated by a Galilean transformation and leads 
to the so-called fi-term in the mean-field induction equation 
(Moffatt 1978; Parker 1979; Zeldovich et al. 1983). If we write 
the mean magnetic field as the sum of a poloidal and a toroidal 
component, the fi-term can generate a toroidal component 
from the poloidal component. The a0-term, on the other hand, 
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regenerates the poloidal field from the toroidal component due 
to the effect of small-scale turbulence. In this paper, we focus 
on the a0-effect, which is the heart of the mean-field amplifica- 
tion process. 

From the inception of turbulent dynamo theory, it has been 
widely realized that the kinematic dynamo models are incom- 
plete. If a weak seed magnetic field is amplified exponentially in 
time, the back-reaction of the magnetic field on the turbulent 
flow that generates it must eventually be taken into account 
and may alter qualitatively the predictions of kinematic 
dynamo theory. This realization gives rise to two important 
questions: first, what is the approximate magnitude of the 
mean magnetic field for which the kinematic theory ceases to 
be valid, and second, what happens to a0 and ß0 when the 
kinematic theory no longer applies? 

An answer to the first question might be that kinematic 
dynamo models will be invalid roughly when the energy of the 
mean magnetic field and the kinetic energy of the characteristic 
tubulent flow reach equipartition. It turns out that this answer 
is not supported by theory at the present time. This is because 
of the " Alfven effect," a process by which the small-scale mag- 
netic fluctuation energy reaches equipartition with the energy 
of the turbulent flow long before the large-scale magnetic field 
has picked up enough energy to reach equipartition with the 
turbulence (Pouquet, Frisch, & Leorat 1976). If one uses the 
simple estimate (Zeldovich 1957) (for which there is no rigor- 
ous justification in three dimensions), 

<<552>1/2 ~ R^B0 (10) 

where Rm is the magnetic Reynolds number, the Alfven effect 
constrains the large-scale field B0 by the inequality (Cattaneo 
&Vainshtein 1991; Vainshtein & Cattaneo 1992), 

Bn< 
(5U2yl2j4np 

RL12 (11) 

Since Rm typically varies from 109 in stellar plasmas to 1014 in 
galactic plasmas, Cattaneo & Vainshtein claim that the 
inequality (11) severely restricts the magnitude of S0 for which 
the predictions of kinematic dynamo models hold. 

A different point of view, but one that also casts doubt on 
the validity of kinematic dynamo theory, is developed by 
Kulsrud & Anderson (1992). They note that in order for mean- 
field dynamo theory to be successful, it is important that the 
small-scale fluctuations be subdominant to the growing mean 
field. Unfortunately, they find the opposite to be the case in 
their calculations: there is much more energy on small scales 
than large, and the mean field generated by the kinematic 
dynamo effect is completely overwhelmed by the faster 
growing magnetic fluctuations. Thus, the "dynamo field 
quickly becomes unobservable under such conditions and the 
kinematic approximation fails before the mean field grows 
significantly "(Anderson & Kulsrud 1993, p. 1). 

If we accept inequality (11) as the regime of validity of the 
kinematic theory, the next question is what happens to a0 and 
ß0 when the kinematic approximation breaks down. In this 
paper, we attempt to answer this question by going beyond the 
kinetic approximation and imposing the constraints of self- 
consistency. We consider magnetic topologies that are more 
general than currently available models of a-quenching. (See, 
e.g., Rüdiger & Kichatinov 1993 and references therein, which 
assume that the mean magnetic field is uniform in space.) The 
standard result (7) is contained as a "weak-field" limit of our 

results. In the " strong-field ' 

<f „ = 
Bo 

B2o 

limit, we show that 

^.2V Jo ' B0 

Bl 

Vol. 449 

(12) 

where J0 = V x B0 and K
2
 is a positive definite functional. The 

form of equation (12) is popularly known as " hyperresistivity;" 
it conserves magnetic helicity and dissipates magnetic energy 
(Boozer 1986; Bhattacharjee & Hameiri 1986; Strauss 1986). 
We demonstrate here that for magnetic fields of nontrivial 
topology, hyperresistivity is left as a remnant after a remark- 
able near-cancellation between the a- and /?-effects of kine- 
matic dynamo theory. 

The following is the plan of the paper. In § 2, we discuss the 
"weak-field" corrections to kinematic dynamo theory due to 
self-consistent dynamics. In § 3, we consider the "strong-field " 
limit in which the turbulence is strongly anisotropic. Though 
the results obtained in §§ 2 and 3 hold in different asymptotic 
regimes, we suggest that it is possible to interpolate between 
those regimes to obtain a form for S „ that contains both 
asymptotic limits. In § 4, we give a derivation of the expression 
(12), using quasi-linear theory. We conclude in § 5 with a 
summary and a brief discussion of the implications of our 
results. 

2. SELF-CONSISTENCY: THE WEAK-FIELD LIMIT 

From the induction equation 

cB 
+ V x (rjj - v x B) = 0 , 13) 

we   can 
A(B= V 

obtain 
x A): 

the   equation   for   the   vector   potential 

cA 
— + >]J ■ x B= -V<£ (14) 

Here 0 is a scalar function. Taking the scalar product of equa- 
tion (13) with A and equation (14) with B, and adding the 
results, we obtain 

(A ■ B) + 2nJ ■ B + V • | IE x A + ^ x A 

where E = r\J 

c 

ct c't 
0,    (15) 

Tt^ Bn (ÖA 

B. Averaging equation (15). we obtain 

5B> + 2riJ0 Bn 

+ 2rKU ■ M> + V • ( 2E0 x A0 + 2<6E x SAy 

cA„ 

ct 
x A„ + 

cd A \ 
~7~ x öA ) 
ct / 

(16) 

An alternative form for c/ct(A0 ■ B0) can be obtained by usint 
the averaged form for equation (14), i.e., 

cAn 
+ >lJ0 - »o x B0 - S = -V(/> Vo 

and the averaged form for equation (13), i.e., 

cBp 
dt 
T + Vx M0 x B0 - $) = 0 . 

(17) 

(18) 
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We take the scalar product of B0 with equation (17) and A0 

with equation (18) and add the two equations. The result is 

et 
(A0 ■ B0) + 2r,J0 ■ B0 - 2S0 ■ B0 

+ V • ( 2E0 x A0 + -^ x A( 0,   (19) 

where  E0 = rjJ0 - v0 x B0 - S.   Subtracting  equation  (19) 
from equation (16), we obtain 

1     r\ 

SB0= -ri^SJ • dB) - - - <8A • 8B} 

-V.(<«xW>+i/^xM (20) 

which reduces to 

B0= -n(8J ■ 8B) + (8E ■ 8B} (21) 

Equation (20) was derived by Bhattacharjee & Hameiri 
(Bhattacharjee & Hameiri 1986; Hameiri & Bhattacharjee 
1987) in their study of the dynamo effect in laboratory plasmas. 
Equations (20) and (21) are both exact relations and impose 
constraints on the allowable functional forms for S. (In deriv- 
ing eq. [21], we have assumed, for simplicity, that the oper- 
ations of spacetime differentiation and ensemble averaging 
commute.) 

The back-reaction of the magnetic field on the turbulence 
that generates it modifies the kinematic relations (8) and (9). In 
the weak-field regime, when the turbulence can be regarded as 
isotropic, it has been shown (Pouquet et al. 1976; Vainshtein 
1980; Zeldovich et al. 1983; Gruzinov & Diamond 1994) that 
the relation (7) changes to 

where 

ff ~aB0- ßJ0 

« = _ 1 ( <«5D • 5(0} - - (ÖJ ■ 8B) 

(22) 

(23) 

Vainshtein reports that ß = 2ß0 for incompressible isotropic 
turbulence. However, if the effect of the perturbed pressure is 
taken into account, then it can be shown that 

ß = ßo (24) 

(Avinash 1991; Gruzinov & Diamond 1994). 
From equations (21) and (22), we obtain 

n(8J ■ 8B} =-<xB2
0 + ßJ0 ■ B0 + (ÖE • SB) .       (25) 

Equation (25) should be compared with equation (9) of Gruz- 
inov & Diamond (after a typographical error in eq. [9] of 
Gruzinov & Diamond is corrected). Gruzinov & Diamond 
maintain that their relation r\(8J • 8B} = -<XBQ + ß^o ' Bo *s 

an exact expression, but this is not so because it omits the last 
term in equation (25). It is this last term that yields hyper- 
resistivity in the strong-field, anisotropic regime. Eliminating 
<<5/ • ÖB) between equations (23) and (25), we obtain 

a0 + (xßprjjßJo ■ B0 + (ÖE ■ SB}) 
(26) 

1 + (Tßr,p)Bl 

In the limit (xlr\p)Bl 4 1, equation (26) gives a ^ a0, the kine- 
matic result. (The second and third terms in the numerator of 
eq. [26] are much smaller than a0 in this limit.) 

We have not shown that equation (26) continues to hold in 
the strong-field regime, which is the subject of § 3. However, in 
anticipation of the results derived in §§ 3 and 4, we heuristically 
take the limit (T/^P)BQ > 1 of equation (26). We obtain 

Substituting equation (27) in equation (22), we obtain 

-    ß ^ + -(8E-8B>)B0-ßJ0, 

Bo 
= -ßJ0, + iT2<6E-SB>- 

(27) 

(28) 

(29) 

The first term on the right-hand side of equation (29) is perpen- 
dicular to B0 and does not contribute to Sn. Thus a significant 
cancellation has occurred between the jS-effect (third term in 
eq. [28]) and (a part of) the a-effect (first term in eq. [28]), to 
yield 

Bo 
Bl 

=-§ <«?■**> (30) 

In §§ 3 and 4, we will demonstrate that equation (30) has the 
functional form of equation (12) in the strong-field limit. 

3. SELF-CONSISTENCY: THE STRONG-FIELD LIMIT 

As a large-scale magnetic field B0 grows in strength, the 
turbulent velocity field adjusts itself to the growing anisotropy 
induced by B0. To motivate the results that follow, we begin 
with a simple discussion of the main physical consequences of 
this growing anisotropy. For this purpose, neglecting col- 
lisional dissipation, we write the linearized equation for the 
fluctuating vector potential 

dt 
ÖA = öv x B0 - VS<p (31) 

which can be resolved into parallel and perpendicular com- 
ponents : 

dt 

— 5^„ V„^ 

SA± = 8v x B0- VL8(j> 

(32) 

(33) 

Hence, we have 

8v x V x 

= ( 8v x V x 

f,,  d5A\ 
dt~öT) 

dt{8v x B0 - Vj. 84>) 

+ (8v x V x (8Anb)} , (34) 

where b = B0/B0. The plasma beta, defined by ßp = 2p/B2, is a 
convenient parameter with which we can track the growth of 
the magnetic field (for fixed p). As discussed later in this section, 
for very large B0, the perturbed quantities 8AL, 8vn, and 8JL 

are very small. Then equation (33) reduces to 

<5»x £0^V±<5c/>. (35) 
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When equation (35) holds, the first angle bracket on the right- 
hand side of equation (34) is nearly zero. Then the second term 
in equation (34) can be written, for incompressible plasmas, as 

S» = 
Bo 

\-(B0ÖAtlSvL). (36) 

Equation (36) is a local relation, and the averaged terms under 
the divergence operator cannot be omitted in general by 
appealing to boundary conditions. We shall demonstrate that 
relation (36) (which is equivalent to the relation [30]) even- 
tually leads to the functional form of equation (12). 

Equation (36) can be derived in a more formally rigorous 
way by introducing a /?p-ordering on the self-consistent 
resistive MHD equations. For fusion plasmas, this procedure 
was first developed by Rosenbluth et al. (1976) and Strauss 
(1976), but a pedagogically more satisfactory derivation for 
astrophysical plasmas is given by Zank & Matthaeus (1993), 
who delineate three regimes ßp > 1, ßp ~ 1, and ßp ^ 1. We 
will use these regimes to classify the three cases of weak, mod- 
erate, and strong magnetic field, respectively. The case ßp £> 1 
is described well by fully three-dimensional, incompressible 
resistive MHD equations, and the turbulence is nearly iso- 
tropic. The results of § 2 pertain to this case. In the cases ßp ~ 1 
and ßp< 1, the growth of B0 leads to the development of 
anisotropy. Assuming, for simplicity, that B ~ B0 = constant 
to leading order, Zank & Matthaeus (1993) demonstrate for- 
mally that the effect of this large-scale field is " to introduce a 
preferred direction into the system that manifests itself by 
reducing the' dimensionality' of the underlying incompressible 
description." Using a small parameter e which is equal to the 
Alfven Mach number MA = v0/VA = v0(p0)ll2/B0, Zank & 
Matthaeus derive, for ßp ~ 1, the system of equations 

a 
8i + V^ 

vL = 0,   VL-BL = 0. 

Bl ViK = -v1(p + ^) + (51-v1)Ä1 

dt 
+ v1-\1 )B± = (BL • \±)v± + r1V

2B1 

(37) 

(38) 

(39) 

where B — BL+ B0z and v = vL to leading order. In this ord- 
ering, A± and v^ are zero to leading order, as asserted earlier. 
It is then possible to write v = VL $(x, y, t) x z, where <f> = 
— 4>/B0 and B± = \LA,,(x, y, t) x 6. Hence, we have 

= <5»X«>n=||V-<- -B05vLSAn > 

<5O«505ÄX>, (40) 

which is identical to equation (36). 
In the next section, we will use quasi-linear theory to show 

that equation (40) has the form of equation (12), with K
2
 related 

to the spectrum of fluctuations. 

4.  DERIVATION OF HYPERRESISTIVITY FROM 

QUASI-LINEAR THEORY 

We introduce Elsasser variables Z+ = BJPQ'
2
 + vL and 

Z~ = BJPQ
12
 — v±. Then, neglecting collisional dissipation 

equations (37)—(39) can be combined to give 

?j. • Z+ = 0 ,   v± • Z~ = 0 . 

j-z+-z- -VLZ
+ = -VLPt, 

8t 

and 

-z- + z-vxz- = vin, 

(42) 

(43) 

where P^ = p/p0 + (Z+ + Z~)2/8. Hereafter, we set p0 = 1. 
We assume that <£> = By(x)y + B0z and that the inhomoge- 
neity depends pnly^on x. Since SBL = \öip x h (where A „ = ip) 
and 6vL = \ö<p x 6, we have 

SZ+ =V^txi,   sz- = V<*_ x A (44) 

where £ + = Sip + 5$ and £_ = dip - S<p. Then the turbulent 
electromotive force S can be written as 

g = (5vL x 5BL) = -A V • <£ + bZ~ - c_ <5Z+> .     (45) 

We Fourier-analyze along y- and z-directions, and write 

£+ bZ~ = 7^1      I     £ + M.-(
X

> t)5Z;y,kz,(x, t) 
\^n) ky,ky',k.,k;' 

x exp [i{ky + k'y)y - i(kz + k!z)£\ 

1 
£ £+M,(x, t)<5ZM*(x, t). 

(27t)2 k 

where * denotes complex conjugation. Similarly, we have 

(46) 

{-3Z+ ~ W ? *-*'*'(*' t)SZtäx<f)'      w 
where k = (ky, kz). From equation (44), we obtain 

Vi£+ = *-Vx<5Z+ , (48) 

which gives 

i + k = K2b- [ik x 6ZZ(x, t) + V x SZt(x, t)] .     (49) 

Similarly, from 

vi£_ =*-vx5z-, (50) 

(41) 

we obtain 

£.k = kl2b ■ [ik x 5Zk(x, t) + Vx <5Zk-(x, r)] .     (51) 

It is clear by inspection of equations (45), (48), and (51) that in 
order to compute $, we need a renormalized turbulence theory 
to deal with the nonlinear terms Z" ■ VZ+, Z+ • VZ~, and 
(Z+ + Z")2 in equations (42)-(43). For simplicity, in order to 
keep the underlying physics as transparent as possible, we 
choose to use the quasi-linear approximation, neglecting 
mode-coupling effects. The linear propagators in our deriva- 
tion can be shown to be broadened by nonlinear effects 
(Strauss 1986; Tetreault 1989). In the quasi-linear approx- 
imation, equations (42) and (43) yield 

| - <Z-> • \\öZ+ =5Z- ■ VX<Z+ > , (52) 

| + <Z+ > • VW- = -SZ+ ■ V±<Z" > , (53) 

where we have used the condition dp + <fi> • ÖB = 0, valid for 
a wide class of resistive modes (see, e.g., Hameiri & Bhatta- 
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charjee 1987). In Fourier space, equations (52) and (53) give 

--ik,<z-y,)8z; = 5z; 

and 

il + iJfc,<z+>»J*Z* =-*z* 

'Vx<Z+> 

vx<z-> 

(54) 

(55) 

respectively.  Equations (54)  and (55) can  then  be easily 
inverted. Formally, we write 

bZt=G-kbZ~k -V<Z+> (56) 

and 

<5Zk- = -Gi&Zt -V<Z->, (57) 

where Gk are the Green's functions, given by 

Gk
±=(yt±»Vz±>,)"1- <58) 

Using equations (56) and (57) in equations (49) and (51), respec- 
tively, we obtain 

{+»Äfc:2G,T^--V<J||> (59) 

and 

£-*- -K2GtöZi -V<J||>. (60) 

Substituting equations (59) and (60) in equation (45), we obtain 

*üv KV •^0 ' ^o (61) 

where 

K = TÄ I *I 2(Gf5Zk- * 5Zk- + Gt
+«5Z,r * bZt) .    (62) 

(4w)    k 

An equation similar to equation (62) has been derived earlier 
by Tetreault (1989) in the context of MHD clump turbulence in 
toroidal plasmas, confined by a strong toroidal field B0. If the 
fluctuations are dominated by one component orthogonal to 
B0 (say, the x-component) which is a case of considerable 
physical interest, then equation (61) can be approximated by 
the functional form of equation (12). We note that equation 
(12) obeys the integral relations, 

and 

S • B0dr 

J0dr= - 

+ 

K2Vi Jo ' B0 

•fp ' B0 

Bl 

^(^IVI 

da 

dr 

Bl 

(63) 

dr. (64) 

where S denotes the surface of V. The physical significance of 
equations (63) and (64) is clear: the turbulent dynamo field S 
neither creates nor destroys helicity in any volume V but dissi- 
pates energy (Boozer 1986, 1993; Bhattacharjee & Hameiri 
1986) within the volume. (If the dynamo field would have 
created or destroyed helicity, there would have been a volume 
term in eq. [63]. There is a volume term in eq. [64], and it is 
negative definite, representing dissipation.) 

We discuss the physical implications of the calculation given 
above in the context of astrophysical plasmas. In the presence 
of a large-scale background magnetic field B0, the plasma tur- 
bulence is envisioned to be a bath of Alfvenic fluctuations. 
Indeed, if we set the right-hand side of equations (52) and (53) 
to zero, we obtain uncoupled Alfven wave fluctuations which 
obey the relation 8v = + SB. Observations of incompressible 
MHD turbulence in the solar wind (see, for instance, Belcher & 
Davis 1971; Burlaga & Turner 1979) indicate a tendency of 
alignment or anti-alignment between the fluctuations 8v and 
SB. Dobrowolny, Mangeney, & Veltri (1980) have shown from 
considerations of the inertial range of the turbulence (ignoring 
source or dissipation terms) that this tendency is a general 
consequence of the dynamical relaxation of self-consistent 
MHD turbulence if the initial excitation favors one type of 
Alfven fluctuation (+ or -). It should be emphasized that 
alignment (or anti-alignment) is merely a tendency and not 
realized in practice. (If this asymptotic state were realizable, 
then according to eq. [23], a would be exactly zero.) However, 
the tendency in itself is indicative of the fact that & calculated 
by the kinematic theory will be strongly reduced by the Alfven 
effect. In the neighborhood of the asymptotic state, one expects 
nonlinear mode-coupling effects to be weak (Dobrowolny et al. 
1980). There are many Fourier modes in the turbulent bath, 
and quasi-linear theory, which sums over the modes but 
neglects nonlinear mode-coupling effects, is a reasonable first 
approximation. In the context of this physical picture, our cal- 
culation shows that when the two types of propagating Alfven 
wave fluctuations are coupled by the terms on the right-hand 
side of equations (52) and (53), we obtain the result (61) in 
which hyperresistivity is left as a remnant after a near-exact 
cancellation between the alpha and beta effects of the kine- 
matic theory. 

Before we conclude this section, we draw the attention of the 
reader to an instructive discussion of the Alfven effect in 
Biskamp's recent monograph (Biskamp 1993). Biskamp gives a 
qualitative discussion of the importance of hyperresistivity in 
the context of MHD turbulence and the inverse cascade phe- 
nomenon that underlies the conservation of magnetic helicity. 

5.  CONCLUSIONS 

In this paper, we have examined the constraints imposed by 
self-consistency on the turbulent dynamo in the weak-field as 
well as strong-field regimes. Synthesizing the results of §§ 2-4, 
we propose the interpolation formula 

a = <<x0 + 
3pt] 

ßj0 ■ B0 + V • K
2
\\ 

B, 

Bl   Jl 

l+^Bl (65) 

As demonstrated in §§ 2 and 3, when equation (65) is substi- 
tuted in equation (22), there is a near-cancellation between the 
a- and j3-effects, and in the strong-field limit, we are left with 
the functional form of equation (12) for g\\, known as hyper- 
resistivity. Even though our derivation of hyperresistivity is 
based on the quasi-linear approximation, we believe that the 
functional dependencies of this term on mean physical vari- 
ables is robust because it is consistent with well-known proper- 
ties of three-dimensional MHD turbulence (Taylor 1974; 
Pouquet et al. 1976; Matthaeus & Montgomery 1980; Boozer 
1986; Bhattacharjee & Hameiri 1986). Hyperresistivity does 
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not amplify either magnetic flux or energy. It can, for example, 
convert toroidal flux to poloidal flux as long as the conversion 
is consistent with helicity conservation and dissipates magnetic 
energy in the process. 

While these conclusions pose critical challenges for tradi- 
tional turbulent MHD dynamo models, they do not negate the 
relevance of the traditional theory for all astrophysical mag- 
netic fields. The mechanism and affectiveness of the saturation 
mechanism discussed in this paper may not apply in all circum- 
stances, particularly if the mean magnetic field is very weak. 
Thus, the galactic dynamo problem may require consider- 
ations rather different from those relevant to the solar or plan- 
etary dynamo. Field (1994) has recently given a useful 
summary of the issues raised by recent criticisms of the 
dynamo theory for galactic magnetic fields, and it is clear that 

a final resolution of the problem of origin of galactic mag- 
netic fields depends on reliable calculations of alpha and beta 
over relevant timescales, after freeing "the classical theory 
from having to assume the first-order smoothing approxima- 
tion." The present self-consistent calculation is a step in that 
direction. 
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ABSTRACT 
The nonlinear interaction of shear-Alfven wave packets is a fundamental physical process underlying 

incompressible magnetohydrodynamics turbulence, as emphasized in the Iroshnikov-Kraichnan theory. 
In the weak turbulence limit, we give a detailed analytical and numerical treatment of the interaction 
between two colliding shear-Alfven wave packets in the presence of a strong and uniform magnetic field 
B = B0t Using the ideal MHD equations, it is shown that three-wave interactions are generally nonzero 
if the kz = 0 Fourier components of the wave packets are nonzero. From the reduced MHD equations, 
we calculate in closed form the three-wave and four-wave interaction terms, and show the latter to be 
generally asymptotically subdominant if the wave packets have no kz = 0 component. Our results on the 
generic dominance of three-wave interactions contradict recent claims by Sridhar & Goldreich (1994) 
who have argued that three-wave interactions are empty and that the Iroshnikov-Kraichnan theory is 
incorrect because it describes weak three-wave turbulence. The principal implication of our results is that 
the Iroshnikov-Kraichnan theory is still a suitable point of departure for the study of Alfvenic turbulence 
in the interstellar medium. 
Subject headings: MHD — plasmas — turbulence — waves 

1.  INTRODUCTION 

Incompressible magnetohydrodynamics (MHD) is the standard model for theoretical studies of astrophysical plasma 
turbulence. Although the applicability of the model to the high-beta compressible plasmas commonly encountered in the 
interstellar medium (ISM) or the solar wind is open to serious questions, the predictions of this model must be understood 
before one can attempt a more complete dynamical theory that includes compressibility and kinetic effects. An issue that has 
crucial implications for theory as well as observations is the form of the turbulent energy spectrum. Although the incompress- 
ible MHD equations reduce to the incompressible Navier-Stokes equation in the limit of zero magnetic field, it cannot be 
claimed that the energy spectrum (in the absence of intermittency corrections) must be Kolmogorov even if the magnetic field 
is weak. If the magnetic field is nonzero, Alfven waves play an essential role in mediating the dynamics of turbulent 
fluctuations. In the Iroshnikov-Kraichnan (hereafter, IK) theory (Iroshnikov 1963; Kraichnan 1965), the collision of 
oppositely directed Alfven wave packets provides a mechanism for the cascade of energy to short wavelengths. Scaling 
arguments (reviewed below) then yield the IK energy spectrum E(k) oc k~3'2. Numerical simulations of MHD turbulence have 
provided some evidence in support of the IK spectrum (see, for instance, Biskamp 1993), but the evidence is not yet conclusive. 

With a view to developing a theoretical basis for turbulence in the ISM (see, for example, reviews by Rickett 1990 and 
Narayan 1992), Sridhar & Goldreich (1994) (hereafter SG) have revisited the IK theory, and claim that the theory is incorrect. 
There are three main steps in SG's refutation of the IK theory. SG first note that in the weak-turbulence limit, the main 
property needed to derive the IK spectrum is that the interaction between two oppositely propagating wave packets (with 
amplitudes of the same order) produces a distortion of the wave packets that is proportional to the square of the amplitude. 
Second, they note that the distortion that scales as the square of the amplitude must be attributed to resonant three-wave 
interactions. Finally, they make the crucial (and surprising) claim that resonant three-wave interactions are absent in the 
theory because the resonant coupling coefficients vanish. Whereas the first two steps are implicit in the IK theory, it is in the 
third step that SG differ sharply with IK. Having concluded that three-wave interactions are absent, SG proceed to consider 
four-wave interactions which yield distortions in colliding wave packets proportional to the cube of the amplitude of the wave 
packets. This cubic dependence of the distortion of the amplitude changes the energy spectrum to E(k) oc /c~4/3, which should 
be contrasted with the IK spectrum E(k) oc k'312. In a subsequent paper, Goldreich & Sridhar (1995) have built further on the 
weak-turbulence theory of SG to develop a strong turbulence theory for the ISM. 

Much of the weight of SG's critique of the IK theory rests on their crucial physical argument regarding the absence of 
resonant three-wave interactions. Montgomery & Matthaeus (1995) have recently expressed disagreement with SG by 
qualitative arguments that strongly suggest that the contribution from three-wave resonant interactions do not vanish. 
Though the physical arguments of Montgomery & Matthaeus have considerable merit, it seems to us that a definite 
resolution of this controversy may require more than qualitative arguments on the crucial question of whether three-wave or 
four-wave interactions dominate the nonlinear interaction of two colliding Alfven wave packets. In this paper, we investigate 
in detail the three- and four-wave processes that mediate the collision of two wave packets propagating in opposite directions. 
We calculate analytically the three- and four-wave interactions in closed form using pertubation theory, and verify the 
analytical calculations numerically. Our principal conclusion is that resonant three-wave interactions do not generally vanish. 
The IK theory remains, in our view, a useful point of departure for the study of astrophysical plasma turbulence. 

The following is a plan of this paper. In § 2, following SG, we review the heuristic scaling that governs three-wave and 
four-wave interactions and their implications for the energy spectrum. In § 3, we consider the collision of two oppositely 
directed Alfven wave packets according to the ideal MHD equations. We solve for the distortion of the wave packets by 
perturbation theory and show that the first-order distortion, which is attributable to three wave interactions, is nonzero in 
general. For simplicity, we consider the reduced MHD (hereafter, RMHD) equations which can be deduced rigorously from 
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the full MHD equations in the presence of a large and uniform magnetic field, B0z, assuming that the plasma ß is less than 
unity (Rosenbluth et al. 1976; Strauss 1976; Zank & Matthaeus 1993). The RMHD equations can describe the nonlinear 
dynamics of shear-Alfven waves in a low-ß plasma. Shebalin, Matthaeus, & Montgomery (1983) have shown numerically that 
in the presence of a strong magnetic field, an initially isotropic spectrum tends to become strongly anisotropic Thus the 
evolving turbulent MHD dynamics provides a natural separation of spatial scales (with slow variation parallel and rapid 
variation perpendicular to the strong magnetic field) that supports the RMHD ordering. The advantage of the RMHD 
equations is that they can be solved analytically for the first-order (three-wave) as well the second-order (four-wave) inter- 
action terms in closed form (§ 4). In the weak-turbulence limit, these analytical results demonstrate that the distortion of 
colliding wave packets due to four-wave interactions is much smaller than that due to three-wave interactions. In § 5 the 
analytical results from § 4 are compared and shown to be in good agreement with numerical RMHD simulations' We 
conclude with a summary and a discussion of the implications of our result in § 6. 

2.  HEURISTICS OF THREE- AND FOUR-WAVE INTERACTIONS: IMPLICATIONS FOR THE ENERGY SPECTRUM 

Following SG, we begin with a heuristic discussion of the implications of three- and four-wave interactions for the energy 
spectrum of incompressible MHD turbulence governed by the equations, 

dv dB 
— + v.yv= _vp + BVB + vV2u ,       — + v ■ VB = B • Vi> + r]V2B ,       V • » = 0 ,   V ■ £ = 0 , 

dt (1) 

where we have set the density p = 1. In the presence of a constant background magnetic field B = B0z, the system of 
equations (1) admit exact solutions (in the ideal limit v = r\ = 0) representing Alfvenic disturbance propagating along z in 
either direction. These solutions are 

and 

B = B0z-f + (x±,z+),   v=f + (xL,z+) 

B = B0z+f-(x±,z-),   v=f-(x±,   z"), 

where x± = {x,y),z± = z + B01, a.ndf±(x) are arbitrary functions satisfying V •f± = 0. If/^Jt) are functions localized in z, 
then/ (x±, z*) represents Alfven wave packets that propagate non-dispersively with the Alfven speed VA = B0. These exact 
solutions propagate inward from z= +co at t-> -oo, retaining their form, until they collide. Because of the intrinsic 
nonlinearity of equation (1), the interaction of two colliding wave packets cannot be simply described by linear combinations 
of/*(*!., z1), for the linear combinations are not exact solutions of equation (1). In the weak-interaction limit (hereafter, 
referred to simply as the weak limit), we can write, 

B = B0z-f
+(x±,z+)+f-(xL,z-) + B1,       v=f+(xL,z

+)+f-{xL,z-) + v,, (2) 

where Bx, vx are nonzero in general and are a measure the distortion of the wave packets when they collide. In the weak limit 
as the magnitudes off±(x) (denoted by v) tend to zero, the magnitudes of Bu vx (denoted by dv) tend to zero even fasten 
Following SG, we can estimate dv for the interactions between two Alfven wave packets with typical size (KJ 

l, K~ 
l) by 

dimensional considerations. The collision time is of the order (KZ VA) ~1, and from equation (1), 

dv 

dt' 

Then, for three-wave interactions, 

whereas, for four-wave interactions, 

K±V 

öv 
dv 

It 

a v 
It1' 

{KzvAy 

i^ 
K±V 

KJ^V3 

dv- 
d2v , 
W2W KLV 

(3) 

(4) 

We note that the main difference in scaling between three-wave and four-wave processes is that öv oc v2 for the former, 
whereas öv cc v3 for the latter. The ^-dependence of the energy spectrum can be deduced if we consider MHD turbulence as a 
bath of mutually interacting Alven wave packets. In the weak limit, it will take a large number of random collisions, 
N ~ (v/öv)2, each with collision time x ~ (KZVA)~ \ for a wave packet to lose memory of its initial state. If we assume that the 
cascade time of the energy is of the order Nx, the rate of energy transfer per unit mass e ~ v2/Nx is independent of k in the 
inertial range. Using E{k)k ~ v2, we obtain 

v 

~Nx' 
kEKzVj - 

öv}2 

v 
constant . 

Using equation (3) and KZ ~ KL ~ k, for three-wave interactions, we obtain the IK spectrum 

E(k)~k-3'2 . (5) 
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Note that we have assumed, for simplicity, that the spectrum is isotropic. While the issue of the isotropy of the spectrum is 
important and merits further investigation, it does not directly affect our discussion here which is primarily concerned with 
the question of whether three-wave or four-wave interactions dominate. 

By equations (3) and (4), we see that the contributions from four-wave interactions are small compared with those from 
three-wave interactions, provided that v is small. However, if the resonant coupling coefficients for three-wave interactions are 
identically zero, as claimed by SG, then by equation (4), the energy spectrum, dominated by four-wave interactions, becomes 

E(k) ~ /r4/3 
(6) 

Thus, the nature of the dominant resonant process underlying the interaction of Alfven wave packets has a crucial effect on 
the exponent of k in the energy spectrum. In what follows, we study this basic process in detail, analytically as well as 
numerically. 

3.  THREE-WAVE INTERACTIONS IN IDEAL MHD 

We consider the dynamical evolution of two localized Alfven wave packets of the form equation (2) according to the ideal 
MHD equations, i.e., equations (1) with v = rj = 0. In the weak limit, we can solve Bu v1 by perturbation theory. Substituting 
equation (2) into equation (1), and choosing the normalization B0 = 1, we obtain 

dvt     dBt = -2(/--v/++/+-y/-)-vP, f-£-W-v/*-/-v/- dt       dz 

We define v1 = (g~+ g+)/2, #i = (|f~ — g+)/2. Then, from equation (7), we obtain 

£ + &-*-"*-"■     £-£-v*.v/-v,: 

where p must satisfy the Poisson equation, 

-V2p = V • (4/~ • V/+) = V • (4/+ • VT) 

in order that W • g± = 0. 
We express all field variables in Fourier tansforms, e.g., 

g±(x, t) 

Taking the Fourier transform of equation (8), we obtain 

g±(k,(o)ei(kx-°")dkd(x) 

±i(k2 + co)~g±{k, co) = F*(k, ©)-=£• FHk, co) = <?*(*, co), 
kk 
k2 

where 

F±(k, co) <^I/W 
) • W±(x^ z^-v-'-^dxdt. 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

We note that z1 = z + t. Defining K
1
 = (kz ± co)/2 and V* = Vx + zd/dz*, we have 

F± = 
-2 

(2K)
2 

-iti-xi dxx 2n 
f*(x±, z±)e ±\„-ix:fz:f dz" 

2% VV^x.zV ■■dz* 

-iki-xj. 

(2n)2 J 

Substituting equation (11) into equation (10), we solve for g±{x, t): 

dXlf
+(x±, K*) • [V± + iK±z]f±{xL, K 

+ i 
g±{x, t) =    -^ G±(k, co)ei{k^XL+K+2++K~z')dk1dK+dK- . 

(13) 

(14) 

As t -> — co,f±{x1, z1) represent two distinct incoming wave packets from z -* + oo. There is no overlap between the wave 
packets in this limit, and hence causality requires that g±{x, t -> — oo) -> 0. The integration contours in the complex K* plane 
have to be shifted +0+ from the real axis in order to satisfy this causality requirement. We are interested here in the 
asymptotic expressions of g±(x, t) as t -> oo, which can be obtained from the contribution of the simple poles K* = 0 in 
equation (14). By Cauchy's residue theorem, we obtain 

g±{x, t -> oo) -+ 271 G±{k, ±kz)e
iikl-XL+k*z±)dk1dkz, (15) 
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wteh «presen, ,wo propagating Aifven wave packets in the same dtrectinns as/'fc, z*,. Nn„ from equation, (11) and (13), 

GHK ±«,>^<*, ±«-f .^(t,±y,       fHk, ±K)._^1 J. —^/^.„.rv^^^y. 

The asymptotic solutions of *± are nonzero for arbitrary functional forms of f±   Note that l*± I nr I /■ + ,-- i     AU ^ 

TÄ  +Tf 10n (3VS determme,d d°±
minantly by three'wave interaction Wesee thaf if'R" ' 0) - 0' then ffi ±fcJ = Hki + K) = 0, and consequently, g±(x, t -» co) -► 0 In other wndc th» ™ * r» ;   r1'   ^ ~ U' then G (Ä> 

interactions vanishes if the *, = 0 component   of trfe Four er ° ansformf 'of ,heZ I ^ ^ r6S°nant three-wave 
components of the Fourier transforms of the wa«paTeta ezIZZvlnnJrT* Pafu f* T"0" SinCe the k* = ° 
interactions generally dominate. generally nonzero in a turbulent bath, the three-wave 

To explicitly evaluate the contribution from four-wave interactions we need tn «,« t„ ^ J     J     • 
theory. In particular, we need to know the exact form of £ by equation nS in«t~H f 5? ^ °rder m Perturbatio* 
equation (15). As shown below, the problem becomes ^UJf^Z^te^^l^ ^^^ ^ 

4.  ANALYTICAL CALCULATION OF THREE- AND FOUR-WAVE INTERACTIONS IN REDUCED MHD 
In the presence of a large and uniform magnetic fields = z the Drimitive MHD Pnn^ti^c.       u    •     ^   , 

beta is low {ß < 1). The primary effect of this large-scale field'is to rS S,, pff   t-Q^? *? simPllfied lf the plasma 
MHD equations Rosenbluth et al. 1976 Strauss 1976 Zank &MatZe tf iwTu dimenllonahty of the incompressible 
uniform magnetic field is much slower than vaSt on tVansverfe ^the field Even tfTrT ^ Spatial.variailon al°ng the 
becomes increasingly amsotropic with time (Montgomery19^2 Shebalm et al f983 L^LT^VAT^ 1S°tT°piC' il 

use of RMHD ordering under which equation (1) can be simplified (m thereat limit) to '      l ^ kg,tmuzBS the 

f-f=Ui]-W,Q],       f-g^,^, (17) 

pt^a^eS tscnptTo^of' n^nlrnÜ tnel^Alt^dytm^ ÄnT of a^e * 7* *MHD «T*»» (1?) 

substantial observational rationale for the use of the system üTaam odel thft ™  , ar8e-scale magnetic field. There is 
in the ISM. Motivated by the observations of Armst on" Cordes TÄ a&^t^^? °f,Pl^tUrbuIenoe 

Montgomery (1982), Higdon (1984) has suggested that the ani^o ropyfn fsM toffiSfa coneoSe ^^^ f
of 

large-scale, approximately uniform magnetic field in which density- fluc\ua LTa?^eis a consequence of the presence of a 
velocity field. Radio wave propagation observations ri™3o™S Ä ^ . passively adverted by the turbulent 
irregularities are Isotropie theblurring pattern or-sSii dT» n? a 

amsot^Py of the density irregularities. If the 
symmetric. On the oth^r hand, fTlCParities arSo Lie theXn^7 n^^ '^^ is r0und and 

observations of Spangler & Cordes (1988) and moreJeceX ÄL™ ri * ^T 1S dongated- Radioastronomical 
lence in the ISM fs anisotrope. FronT^Ä *at the turbu- 
amsotropic, with an axial ratio 1.31 ± 0.02. iviomar et at. (iyys) report that the scatenng disk is 

The discussion above motivates us to explore nonlinear shear-Alfven dynamics based on the RMm „„,   ♦■ 

SbST"(2% ,or weak m,crac,lons bc,wem w° C0,M^ —«Ä. ™1SS ™ ÄÄÄS 
*=/-(Ar1,z-)+/Vi,^) + *1+*2+....       -4-/-(i1,O-r(x1.0 + ^+^+.... (18) 

The first-order solutions obey the equations, 

dkl-,      8J, a J        3 i 
!T-5l-W*.Vi/-] + y-,vir],.,,    Mi^ = 2[/-,r]sG^ (l9) 

As in § 2, the asymptotic expression of <f>u A^ are of the form, 

U** t- oo) - /r(x±, z-) + /+(,„ z+),        AM,, t - co) - /,-(,„ z-) - /1+(Xx, z+); 

where 

/* (•*!.> 2) = n 

(20) 

(21) [F'(*. *r) T Ö(A, ±k2)]eik-*dk, 

has a form similar to equation (15) with F'{k, co) = F(*, ca)/fej 
To simplify the derivation of the second-order solutions, we assume that the functions f*(r    ., u,    • 

/-<*x. x) = /f (.J/*W The separability of/±(,x, z) ensure that the ^^F^^Z1^^^^^ 

F(x, t) = Fxix,)f+{z+)f-iz-),        G(x, t) = GLixx)f + (z)f-iz), 

F(k, co) = $?Mf+(K+)f-(K-),        Gik, co) = iÖJL(*1)/>+)/-(K-). (22) 
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(23) 

which is similar to equation (16). Once again, as in § 2, we conclude that the first-order perturbation is nonzero unless 
/±(0) = 0. To find the exact functional forms of 4>\ and Alt we define 

Then ^(x, r) is given by 

«±(x, t) =    [Fl + GJ«*1'*1^ if^/^v /^^«Ml^)/4^). 
The complex integration in the complex K±

 plane is carried out the same way as in § 2, and yields the asymptotic results, 

/*(*)■ 

0 as   z -* + oo , 
nf±{fyß       as   z -> +oo 

(24) 

(25) 

(26) 

so that u±(x, t-> oo)-*fi(x±, z*). We observe that the functions fi(xlt z1) have exactly the same z-dependence (via the 
functions/*^*]) as the incoming wave packets/±(x1, z*). This implies that at first order there is no cascade of energy in the 
kz direction, but only in the transverse direction, as exhibited by the form factors FL and G±. Thus, the plasma becomes 
increasingly anisotropic and the RMHD ordering is strengthened further, making the RMHD approximation internally 
consistent (Montgomery 1982). 

Now that we have explicit expressions (25) for the first-order solutions, we can calculate the second-order solutions. The 
relevant equations are 

IT ~lt = 2(c/*' vi""] + u~- vi"*] + c"*'vir] + [""-v;r:( s " ■ 

The function H has the following separable form: 

H = H_(xjf-(z-)f-(z-)f+(z+) + H+(xx)/-(z-)/+(z+)/+(z+), 

(27) 

Ä(*,a») = |fi_(*1) 
2it 

f-{z-)f-(ry dz' /+(K+), (28) 

+ 2 H+(kJ 2n 
f+(z+)f+(z+)e-iK+*+dz" />'); 

similar expressions hold for / as well. As in equations (20) and (21) of the first-order calculation, asymptotic expressions for $2 
and A 2 can be calculated from the relations 

<f>2(x±, t -► co) -»/I (*±> z') + f2{x±, z+),       A2(x±, t -» co) -*f2{xL, z~) -f2(xx, z+), 

ff(xL, z) = 7i     [H\k, ±kz) + I(k, ±kz)-\e*=dk ,   (29) 

where H' = H/k\. Now, we consider 

S{k, ±K) = ^f 2% 
r(z)f<(z)dz /*w + ^ 

271 
/±(z)/±(z)c-,t"dz P(0) (30) 

It can be shown that the first square bracket on the right-hand-side of equation (30) is equal to 7t[/+(0)]2/4. Substituting this 
result in equation (29), we obtain 

fi(xx, z) = [v^xJ/^O) + wHxJfHzüfHOVHz) (31) 

where 

vHxJ = LHL(kJ + I„{kj\e*^dkL ,       w±(Xl) = - [fi^ij;^^)]«^^^ (32) 

Since by equation (31), | f2 | oc | /13, we see, upon comparison with equation (4), that the second-order perturbative solution 
has the scaling anticipated from four-wave interactions. 
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Equation (31) shows, somewhat surprisingly upon first glance, that for the case/*(()) = 0,not only do the first-order (three- 
wave asymptotic solutions/? vanish, but so do the second-order (four-wave) solutions/*. However the second-order 
solutions will not generally vanish if the wave packets are nonseparable. nowever, tne second order 

We consider a simple example, with/^z*) = cos (k*Z*), to illustrate clearly the physical content of the formal results 
obtained above. The cosine profiles do not represent wave packets in the usual sense because they are not spatially localized- 
rather, they may represent a Fourier component of a wave packet. By direct integration, we obtain 

F(k, co) = F(kJWkz - k+ - k~)ö(co - k+ + k~) + 5(kz - k+ + k~)ö(co - k+ - k~) 

+ 5{kz + k+ - k~)S{co + k+ + k~) + S(kz -r k+ + k-)S(co + k+ - jfe-)]/8 . (33) 

In equation (33), the arguments of the «5-functions involving kz and co, respectively, represent the constraints of momentum 
and energy conservation It is clear by inspection that the first-order solution can be attributed to three-wave interactions We 
also see from equations (21) and (33) that/? = F(k, ±k) = 0 except when k* = 0 which means that if there a nonzero" =0 
component in the colliding wave packets, the first-order asymptotic solutions do not vanish. By equation (25) we' can 
calculate the first-order solution exactly: y   ^ >"'• we can 

u±(x, t) = u? (x±) sin (kTzT) cos (fc±z±) . (34) 

We can see clearly from equation (33) that the three-wave interactions calculated here are resonant, and cannot be trans- 
formed away by a redefinition of variables (in the manner suggested by footnote 5 of SG). These interactions satisfy the energy 
and momentum conservation relations (required by the arguments of the delta functions) which are defining oroDerties of 
resonant interactions (Zakharov, L'vov, & Falkovich 1992). 8 Properties oi 

By the definition (28), we obtain 

H(k, co) = H_(kL)[ö(kz - k+ - 2k-)S(co - k+ + 2k-) - S(kz - k+ + 2k-)S{co - k+ - 2k~) 

+ S(kz + k+ - 2k-)S(co + k+ + 2k~) - 5(kz + k+ + 2k-)ö(co + k+ - 2fc-)]/16i 

+ H + (k±)[ö(kz - 2k+ - k-)S(co - 2k+ + k~) + ö(kz - 2k+ + k-)ö(co - 2k+ - k~) 

- 5(kz + 2k+ - k-)5(co + 2k+ + k~) - ö(kz + 2k+ + k-)ö(co + 2k+ - fc~)]/16 . (35) 

By inspection of equation (35), it is clear that the second-order solution can be attributed to four-wave interactions From 
equations (29) and (35), we also see that/? = H(k, ±kz) = 0 except when k* = 0, which is similar to the property of the 
first-order solution. It can be inferred from this exercise that if the second-order asymptotic solutions are nonzero then in the 
weak limit, they are asymptotically much smaller than the first-order solutions (when the wave packets are separable) Note 
also that the second term m equation (31) or (35) indicates harmonic generation that may cause an energy cascade in kz. 

5.  NUMERICAL RESULTS 

Although the analytical results presented in § 4 are straightforward, it is useful to compare the predictions of the per 
turbative calculation with numerical results from the RMHD equations (17). We discuss the outcome of a simple numerical 
experiment m which two opposite propagating shear-Alfven wave packets collide. We solve the RMHD equations numeri- 
cally using periodic boundary conditions in the xx-plane and reflecting boundary condition in the z-direction It is convenient 
to use a spectral decomposition m the Xj.-plane, and a finite-difference method along z. Since the wave packets are localized 
and do not reach the boundaries along z during simulations, the boundary conditions along z have a negligible effect on the 
results reported below. 6 

The incoming wave packets used in the numerical calculations are of the form, 

ft(x1) = sin(K1x),       fI(x1) = sm(K±y),       f±(z) = c±e~K^±:<*2 cos [kQ(z ± z0) + fl±] , (36) 

where c±, a±, k0, z0, KX, and KZ are real parameters. At f = 0,/* represent two localized wave packets centered at z = + - 
propagating in the + z direction. The first-order solution is given by equations (25) and (26). It can be shown easily that       "°' 

Mi(*±) = +
2K

I COS (KXX) cos (KLy),      f±(k) =     C±     e±fco|e[;a±-(t±t0)2/4K?] + e-u.±-[(i + *oWKl
2n 

4KZ%/TI ' 

Hence, the kz = 0 component of the wave packet is given by 

y±(0)     c+coscu     ..i,. 2. 

2KZS/% 

which vanishes if cos a± = 0, and is very small when k2
0 > K\. By equations (25), (26), and (36)-(38), we obtain 

+ c + c 

(37) 

(38) 

/?(*!, z1) = ~^~ K\ COS aT cos (K±X) COS (K.^-M«"«
2
)-^^^ COS ^Z± ± ZQ) + a±] (39) 

We note that the exact result equation (39) confirms the qualitative scaling (3) because v cc KX/, öV CC K±f1 

To compensate for the effect of numerical dissipation, we find/? numerically by taking the difference of the run with initial 
conditions/- given by equation (36), and two other runs with the initial conditions/+ or/". We have carried out runs with 
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FIG. 1.—The initial condition at t = 0 for $ (solid line) and A (dashed line) at x = y = 0.375 along z, calculated by eq. (36) for parameters KL = 2n, KZ = 
10, z0 = 0.25, a ± = 0, fc0 = in, c± = 0.0125 and with spatial resolution 8 x 8 x 200. The abscissae are z + 0.5. 

the following parameters: K± = In or 4n, KZ = 10, 20 or 40, z0 = 0.25, a± = 0 or n/2, k0 = 0, 8TC, 16K or 24K, C± = 2"(0.00625) 
for n = 1, 2, 3,.... Figure 1 shows the initial condition at x = y = 0.375 along z, for a run with K± = 2K, KZ = 10, z0 = 0.25, 
a± = 0, k0 — 8K, and c± = 0.0125. The results for the spatio-temporal evolution agree with equation (39) for most cases with 
errors as small as 0.4% and rarely larger than 10%. We have verified the functional forms in x, y, and z, as well as the 
parametric dependence on KL, KZ, C± and k0. For the initial condition shown in Figure 1, Figure 2 shows the comparison 
between analytical and numerical results for the first order fields at t = 0.5, along z for x = y = 0.375. The difference between 
the analytical and numerical results increases when/f is small or c± is large. For example, when cos a± = 0 (or kl $> K

2
2\ 

equation (39) predicts that/f should be zero (or extremely small), and hence, there should be no (or extremely small) 
first-order asymptotic fields. However, in the numerical experiment, the presence of numerical error fields (~10~8) leaves 
first-order residues that are somewhat larger than the analytical predictions. 

Although the first-order solution is, in general, much larger than the second-order solution, we see from equation (39) that 
when cos (/cx X) COS (KL y) = 0, the first-order solution vanishes. Along these lines in x — y space, the second-order fields can be 
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FIG. 2.—First-order fields <f>l (solid line) and Ax (dashed line) from the simulation at t = 0.5 for the initial condition of Fig. 1, along z for x = y = 0.375. 
Comparison with 4>A + ) and Ai(x)»§iven analytically by eqs. (20) and (39). 
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round „„„edcall, and ,„e„ values spared „i,h ,„e ana.y.ica, predictions ,31, and ,32). For «he initia, conddions ,3«), „e 

v±(*±)= -y Ktsm(KJ-- ■ cos (2KJ
+
) + 1 47T w (*±) = y KJ sin (KX£

+
) COS (2^^) (40) 

Ä^f„oÄ 
integration. We obtain J   [ ' g        Dy e1uatl°n (36),/±(z) can be obtained by direct 

/*(*) = Re 
8K. 

1 + erf KJ Z + Zo 
2K: 

2        2 
-(ko/4Kz) + ia± 

(41) 

where erfdenotes the error function and Re denotes taking the real part In particular ?±rn 1/2        ,    ,2,    , 
Hence, we can easily compare the analytical results eauatinn mUuthVu partlc7ar'^, ( + zo) = c + n1'2 exp -^/4KZ

2
)/8KZ. 

(41) at the points J = ^0. We find ^X^^^^^^1^^ ^T™ ^ ^ ^ ™d 

absolute values of the second-order solutions are verf ^^10^^^ ^ira
1
th?U8hthe 

qualitatively consistent with the shape of the functions /±(z). The nZedcZJiZ^lZ T °T ^ ?°JUtl0nS *K 

prediction and are consistent with equation (4) Figure 3 shows th^meriri2^ fl- \' z' C±/ls° Sgree Wlth analytical 
the initial condition of Figure 1 along z for/- 0 25 v - n 7? the numerical and analytical second-order fields at t = 0.5 for 
verysmalDfor/^O) - 0Whence, a?^^^^^™* *** « expected to vanish (or be 

RMVDTimSrs.
analytlCa] PredlCti°nS fr0m fifSt -d —d-d- Perturbatioftheory are m good accord with the 

6.   CONCLUSIONS 

if the heuristic arguments in § 2 are vÄffÄtSr!,     "       TF f ^^ IS gmn by the IK theory 
transforms of the packets, as discussed cJrl   - the^ ^ 
elegant vanational analysis omits third-order terms (proportional tnZS % th       f   1i ^ )- technical level, SG's 
and this omission leads to the conclusion that thST™Ä^lw The? fsP1feme°t)in the Lagrangian, 
analysis are discussed in more detail in the Appendix mteractl™s are empty. The technical problems involved in SG's 

weak MHD turbulence in thepresence o'a sS^ÄS K^M/     ft ""* f0Ur-Wave interacti°^ in 
indevelopingamorecomplet/analyticalther/of^raS 
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While we have provided fundamental arguments in support of the general dominance of the three-wave interactions 
underlying the IK theory, it would be premature to suggest that the IK theory is a valid theory of fluid turbulence in the ISM. 
Besides the questionable assumption of isotropy, effects of compressibility will lead to nonlinear steepening of Alfven waves in 
a manner excluded by the incompressible theory. Collisionless effects, not included in the Ohm's law of resistive MHD, are 
likely to have a profound effect on the nature of the turbulent dynamics. Nonetheless, incompressible MHD or even RMHD 
is a useful starting point, because it allows us to focus on aspects of shear-Alven dynamics that have fundamental implications 
for problems of astrophysical plasma turbulence. 
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APPENDIX A 

REMARKS ON SG'S LAGRANGIAN ANALYSIS 

We have shown that the three-wave interactions are generally nonzero unless the k2 = 0 component vanishes. Therefore, 
SG's conclusion that three-wave interactions always vanish can be traced to the incorrect assumption that there is no kz = 0 
component, or in their own words, such " waves possess no power to contribute to resonant interactions." The physical flaw 
underlying SG's reasoning, as pointed out by Montgomery & Matthaeus (1995), is that such a component cannot be treated 
as a wave, as distinct from a spatial Fourier mode. Here we point out the technical problems SG's Lagrangian treatment. 

SG begin from the Lagrangian 

L = d3x\ 
pv 

8?r 
(Al) 

for the ideal incompressible MHD model with constant density p. Following Newcomb (1962), they treat the position vector x 
as the Lagrangian variable of a fluid element such that 

x = x0 + £{x0, t) (A2) 

where t; is the displacement vector following the fluid element with initial position x0 + £(x0, 0). Then the velocity v and 
magnetic field B of the fluid element can be written as 

dfl*o, t) 
8t 

B = B0 + B0 
dt(x0, t) 

OX« 
(A3) 

where B0 can be chosen to be the constant magnetic field B0t For small <!;, using equation (13), we can write the kz — 0 
component of B to the lowest order in £, as 

B(x±, K = 0)*S0 dz 
dz = B0l£(xx, co) - S(x±, - co)] , (A4) 

which is in general nonzero, unless we make one of two possible asumptions: either £(xL, oo) = £(*_,_, — co) or £{x±, z -> 
± co) -> 0. The first assumption is too special to be of general interest, and so we consider the second possibility. Even is we 
require the Alfven wave packets to be so localized that v, B -> 0 as z -» ± co, it is not necessary that £ should vanish as 
z -> + co because the fields v, B are expressed as derivatives of c, by equation (A3). For example, if we use the wave packets 
(36), which is a legitimate choice with v,2? -> 0 as z -> + co, and calculate £, we will not generally obtain /; as z -» + oo. Hence, 
the second possibility is overrestrictive. We conclude that the right-hand side of equation (A4) is nonzero in general. The 
appropriate boundary condition for the displacement vector is £{xL, z -> + oo) -> ^{xj with £+(xJ ¥= £~(*±) # 0 in general. 
Because of this, the definition of the Fourier transform of £, becomes problematic, and may not even exist if, in particular, 
£(x±, kz-^0)-> co. 

Without addressing the question of existence of the Fourier transform of %, SG write the following Lagrangian L by 
integrating over fc-space: 

m = \ dzk * 

8TT
3
 . Z(k)'Z(-k)- -<a2(*)f (*)■!(-A) (A5) 

where co(k) = VA\k,\ and VA = B0/{4np)112 being the Alfven speed. Note that the Fourier transforms are taken in x0-space 
(" unperturbed space ") but not the jc-space (" perturbed space "), with x related to x0 by equation (A2). The first variation with 
respect to % must satisfy the Jacobian constraint 

J = 
8x_ 

8x0 

S.. + ÜL 
11     dxoj 

= 1 (A6) 
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for incompressible plasmas. This constraint can be incorporated by using either a Lagrange multiplier or by solving equation 
(A6) directly and substituting the results in L(£). SG implement the latter procedure perturbatively to lowest order in I and 
ODtäin 

L = L(rj) + 0fo*) . (A7) 
where Lfa) is defined by substituting r, for f in equation (A5) and &(A) = rj((k) + k^W with kt m = 0. Since there is no »3 

term in equation (A7), SG conclude that three-wave interactions are empty. If this conclusion is indeed correct then the total 
Lagrangian L(f) given by equation (A5) with V0 • £ = 0 should, to this order, describe a system of noninteracting waves But 
as we show below, this is not so. (In the weak limit, omitting four-wave and other higher order terms we can omit the 
Jacobian constraint.) The Euler-Lagrange equation is 

l(k) + <o2(kW) = 0 , 

-ito(*)( 

which has the general solution 

l(k, t) = l1(A)eM*), + |2(Ä)e- 

Transforming to real x0-space, we obtain 

f(*o. t) = ^(JCJ.0. 
zo +VAt) + ^2(x10, z0 -VAt). 

Using equation (A3), the v, B fields of the wave packets can be expressed as 

v(x0, t) = v,(x±0, z0 + VAi)- v2(xL0, z0 - VAt)       B(x0, t) = B&u, z0 + VAt) + B2(xL0, z0 - VAt), 

(A8) 

(A9) 

(A10) 

(All) 
with B( = B0vJVA. Upon first glance, it may appear that the two localized Alfven wave packets propagating in opposite 
directions have no interaction at all. However, here Bt and vt are expressed as functions ofx0, as distinct from /=•= of equation 
(2) which are functions of x. Expressing the fields as functions of x by means of the relation (A2), we find that the perturbation 
terms Bx, vt in equation (2) are not zero. Indeed, to lowest order in £ as t -* co, we obtain 

AB^, z+VAt)x -B2(x±, kz = 0) • VfiiCxj.0, z0 + VAt)/B0 , (A12) 

using equation (A4). Note that equation (A12) is identical to the result obtained earlier using equations (15) and (16) to the 
same order off, based on three-wave interactions. Contrary to SG's claim, we have thus shown that in the "perturbed space " 
there are nonvanishmg three-wave interactions in the Lagrangian (A7) even though there are no <%3) terms This becomes 
even more transparent if we follow SG and take Fourier transforms but do so in the "perturbed space" at the outset in which 
case the total Lagrangian will contain manifestly nonzero third-order terms. For example, using the transformation ' 

8A 
dt dt 

dA 
dx dt 

iteratively, the first term in the integrand of L, to third order £, is given by 

l2dx = 
(271) 

!(*)• !(-*>** + 
(2n) m ■ £(k'w ■ £(k")ö(k + k' + k")dkdk'dk-. 

(A13) 

(A14) 

While this suggests qualitatively why our conclusions differ from SG's, the derivation of the correct third-order Lagrangian 
with general boundary conditions is beyond the scope of this paper. 
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Weak magnetohydrodynamic turbulence in the presence of a uniform magnetic field is dominated 
by three-wave interactions that mediate the collisions of shear-Alfven wave packets propagating in 
opposite directions parallel to the magnetic field. The scaling of three-wave couplings is calculated 
by asymptotic analysis and a direct numerical evaluation of the nonlinear interaction based on the 
reduced magnetohydrodynamic equations. A new relation is derived between the spectral index of 
three-wave coupling and the spectral indices of two random-amplitude wave packets. This relation 
has significant implications for the anisotropic energy spectrum. © 7997 American Institute of 
Physics. [S1070-664X(97)00803-3] 

I. INTRODUCTION 

The structure and scaling of magnetohydrodynamic 
(MHD) turbulence are issues of considerable interest for 
laboratory as well as astrophysical plasmas. Incompressible 
magnetohydrodynamics, despite its limitations as a model, is 
usually the starting point for the investigation of these issues. 
In the presence of a directed magnetic field, MHD turbulence 
tends to exhibit a pronounced anisotropy. The main goal of 
this paper is to examine, in the limit of weak turbulence, the 
nature and scaling of the anisotropic fluctuations in a plasma 
permeated by a spatially uniform magnetic field B=50z. We 
demonstrate that the scaling of the anisotropic fluctuations 
even in this highly simplified configuration exhibits features 
that raise serious questions regarding the validity of some 
common assumptions made in scaling or closure studies of 
MHD turbulence. 

In view of the striking success of Kolmogorov's original 
theory of hydrodynamic (HD) turbulence,1 it is plausible that 
early work in MHD turbulence relied on some of the same 
assumptions as the Kolmogorov theory after incorporating 
new dynamical features introduced by the presence of mag- 
netic fields. Two such well-known assumptions are the isot- 
ropy of the turbulence and the dominance of local interac- 
tions in yt-space. In the Iroshnikov-Kraichnan (hereafter, IK) 
theory of MHD turbulence,2'3 small-scale fluctuations are en- 
visioned to behave as Alfven wave packets propagating 
along magnetic lines of force, and the collision between two 
oppositely propagating wave packets provides a mechanism 
for the cascade of energy to short wavelengths. This picture 
of colliding wave packets mediating the cascade to short 
wavelengths not only provides physical insight, but is also 
supported by evidence in numerical experiments4,5 as well as 
in situ observations of the solar wind6-9 that Alfvenic fluc- 
tuations play an important role in the energy transfer be- 
tween the fluid and magnetic field fluctuations. While the IK 
theory elucidates the role of colliding Alfven wave packets 
in the generation of the cascade, it retains the assumptions of 
isotropy and local interactions underlying the Kolmogorov 
theory. 

The violation of the assumption of isotropy in the pres- 
ence of a mean magnetic field has been recognized by sev- 

eral investigators. However, the assumption of local in- 
teractions has not received the same amount of scrutiny. One 
of the objectives of this paper is to revisit this assumption, 
and provide analytical and numerical evidence that raise 
questions about its validity. We also show that the violation 
of this assumption can have a significant effect on the scaling 
of the anisotropic energy spectrum. 

II. DIMENSIONAL AND HEURISTIC ANALYSIS 

In order to elucidate the important role that the assump- 
tions of isotropy and local interactions have played in theo- 
ries of MHD turbulence, we begin with a brief review of 
scaling arguments in HD as well as MHD. Kolmogorov1 

demonstrated that the turbulent energy spectrum in the iner- 
tial range of an incompressible fluid can be found by dimen- 
sional analysis. His argument can be summarized as follows. 
Let us assume that the turbulence is Isotropie in wave num- 
ber (k) space. Then the total energy can be written fE(k)dk 
where E(k) is the turbulent energy spectrum. Assume that 
there exists an inertial range such that the energy transfer rate 
s(k) is constant (independent of k) and, furthermore, that the 
energy transfer is local in fc-space. Since the dimension of s 
is L2T~3, k is I-1 and E(k) is L3T~2, where L is the di- 
mension of length and T is of time, dimensional homogene- 
ity of the relation e~k"Ef yields the inertial-range energy 
spectrum E{k)^emk~5n. 

Iroshnikov2 and Kraichnan3 extended Kolmogorov's an- 
alysis to incompressible magnetohydrodynamic (MHD) tur- 
bulence. As discussed by Kraichnan,3 there is a crucial dis- 
tinction between hydrodynamic (HD) and MHD flows: 
whereas a uniform velocity in a HD flow can be transformed 
away by a Galilean transformation, a uniform magnetic field 
in a MHD flow cannot. The imposition of a background 
magnetic field causes wave disturbances to travel along the 
uniform magnetic field in both directions with Alfven speed 
VA (which is a measure of the magnetic field strength). A 
wave packet can interact with another wave packet only if 
the two are moving in opposite directions and collide. Since 
the interaction time T~(kVA)~l is usually much shorter than 
the eddy turn over time k~lv(k)~l, where v(k) is the typi- 
cal amplitude of the wave (in dimension of velocity), the 
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energy cascade is more inhibited in MHD than it is in HD. 
By treating the £=0 component of the magnetic field at any 
spatial location as the locally uniform field, and assuming 
that the MHD turbulence is isotropic and local in /t-space, 
Kolmogorov's dimensional arguments can be repeated, now 
with e depending on k, E(k), and VA (with dimension 
LT ). Writing B~kaE$V\', we can deduce the spectral in- 
dex v of the inertial-range energy spectrum: 

a 5-7 

ß     3-y' (1) 

with the unknown 7 to be determined. [Note that the Kol- 
mogorov spectrum v=f is obtained if we set 7=0 in Eq. (1).] 
To find v, we must determine the value of 7 which gives the 
power law dependence of e on VA. This can be done in the 
limit of weak turbulence when the interaction between two 
wave packets can be treated by perturbation theory. The 
lowest-order interaction involves three-wave interactions 
during which two wave packets collide for a typical time 
scale r~{kVA)~l and produce a third wave with typical ve- 
locity magnitude Sv. By the relation S^(SV)

2
/T^T, we ob- 

In this paper, we attempt to test from first principles the 
assumption of local interactions. One of our main results is 
that the heuristic scaling Sv-k1v

2/ktVA for three-wave in- 
teractions is questionable, and this casts serious doubts on 
the validity of the arguments given above of the energy spec- 
trum E{kL)^emkl2. We obtain a new nonlocal scaling for ' 
the fluctuation Sv and explore its possible consequences for 
the anisotropic energy spectrum of weak MHD turbulence. 
Following Iroshnikov2 and Kraichnan3 we assume that three- ' 
wave interactions dominate, but our emphasis here is on the 
scaling of the anisotropy, neglected in the IK theory. 

III. THREE-WAVE INTERACTIONS 

The dominance of three-wave interactions in the limit of 
weak turbulence has been the subject of two recent papers by 
Montgomery and Matthaeus18 and Ng and Bhattacharjee 
(NB).14 Using the ideal MHD equations, NB show that three- 
wave interactions mediating the collision of two shear- 
Alfven wave packets are in general nonzero if the klt=0 com- 
ponents of the wave packets are nonzero. This has been 
shown to be true for the full as well as the reduced MHD 

19 tain y=-l jind thus  v=-2, which^ yields the Iroshnikov-       (RMHD) equations.19 Furthermore, using the RMHD equa 
tions, NB calculate in closed form the three-wave and four- 
wave interaction terms, and shown the former to be asymp- 
totically dominant if the wave packets have nonzero &B=0 
components. To keep this discussion self-contained, we be- 
gin with a summary of relevant results by NB. The RMHD 
equations (in the ideal limit) can be written as 

Kraichnan (IK) spectrum E(k)^emk~3'2. 
The scaling results obtained above by dimensional 

analysis for isotropic MHD turbulence can also be obtained 
by an alternate physical argument.13,14 Let each of the two 
colliding wave packets have amplitude of the order v and 
spatial scale k~l. Assume that the energy transfer is local in 
k space, which means that a wave will interact dominantly 
with another wave with the same length scale but moving in 
the opposite direction. From the MHD equations, we esti- 
mate that v~kv2, where an overdot denotes time 
derivative. Then, if three-wave interactions dominate, we 
can write SV~VT~V

2
/VA. In the weak limit, it will take a 

large number of random collisions, N~(v/Sv)2>\, to 
change a wave packet amplitude significantly. Assume that 
the energy content of the wave in this length scale cascade to 
the smaller scale after N collisions. Hence, we obtain 
e~v2/Nr~k2E(k)VA/N~k3E2(k)VA

l, which implies that 
E(k)xsmk~m, also obtained by dimensional analysis. 

The physical argument discussed in the preceding para- 
graph shows how a heuristic scaling can be obtained when 
dimensional analysis fails. Dimensional analysis is useful in 
determining the spectral index if the turbulence is isotropic. 
However, in the presence of a background magnetic field, the 
MHD turbulence is anisotropic.10"'7 Dimensional analysis 
cannot then provide a definite result since it cannot discrimi- 
nate between the two length scales perpendicular (k±l) and 
parallel (fcf1) to the uniform magnetic field. Let us assume 
that the energy cascade occurs entirely in the direction per- 
pendicular to the uniform field so that the total energy can be 
written fEik^dk^dk^. If we now repeat the scaling argu- 
ment given in the last paragraph with T~(knVA)~\ we obtain 

du.    dJ dA    d<b 

where the magnetic field is given by B=z+V,Axz 
with A as the magnetic flux function, the flow velocity 
is given by v=Vx<£xz with <f> as the stream function, 
and [<t>, A] = 4>yAx- (frjiy. The parallel vorticity is then 
n=-V±0, and the parallel current density is J=-V2

LA. 
Note that we have normalized the background uniform mag- 
netic field in the z direction to have unit magnitude, and the 
density has been chosen so that the Alfven speed VA=1. For 
weak interactions between two colliding shear-Alfven wave 
packets /* traveling in the ±z directions, we write perturba- 
tive solutions of the form 

<f>=f-(xl,z-)+f+(x1,z + ) + <}>l + <t>2 + --- , 

A=/-(x1,2-)-/+(x1,2 + )+/l1+A2+--- , 

where xL=(x,y) is perpendicular to z and z~=z + t. For 
given zeroth order fields /^ the first-order solutions can be 
found by solving the equations14 

dJx 

Hz 

Sv~kLv
2lktV\~klE{kL)IVA (2) 

dil1      oj 1 _ 

-jr~—=2^+' Vi/~M/-. virile, 

dAx 

dz 

(3) 
= 2[/-,/+]-G. 

Thus E~kLk^E {kL)IVA, which implies that the anisotropic 
spectrum  is  E(k±)*s    kx     for  weak  MHD  turbulence 
dominated by three-wave interactions. 

This is a radiation equation for the first-order fields, with the 
source term determined by the overlap of the given zeroth- 
order fields/"1" and/-. (The source term is localized both in 
space and in time, assuming that the functional forms of f~ 
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are chosen so that the wave packets are localized in z.) The 
asymptotic expression of fa, A t can be written as 

fa(xx ,r-»)-/r(xi ,z-)+ft(*± -z + ). 

A,(x± ,r-oe)-+/-(x1 ,z~)-/f (xx ,z + ), 

where 

/f(x1,Z) = 7r|[F'(k,±^)?G(k,±^)]e'
kxdk, 

with F'(k,w)=F(k,w)/)ti and F(k,w) is the Fourier trans- 
form of F{x,t), defined by 

F(x,t)= [ F(k,6J)e
/(k-x-M,) 4krfo>. 

The Fourier transform G(k,w) is similarly denned. To sim- 
plify the calculation that follows, we consider the case in 
which the functions /±(x1,z) are separable, i.e., f±(x1,z) 
=ff{x1)f-(z). [The calculation can also be carried through 
in the more general case when /±(x1 ,z) can be written as a 
sum of such separable terms, which is always possible as 
long as the boundary conditions in xx are periodic] Then we 
can write 

F(x,t) = FL(xJf+(z + )r(z-), 

G(x,r) = G1(x1)/
+(z + )/-(z-), 

F(k,<o) = lr F±(k±)f
+(K+)f-(K-), 

G(k,6J)=-G1(kJ/+(K+)/-(K-), 

where K±=(A:2.±a>)/2, f(K~) isjhe one-dimensional Fourier 
transform of f^iz'), and FL and GL are the two- 
dimensional Fourier transforms of Fx and G±. We obtain 

(4) 

(5) 

/f(xi,zi) = 77«i(x1)r(0)/i(z±)/2, 

where 

ul(xL)=j[F[ + GL]eik^dkL, 

and /*(())_ is the kz=Q Fourier component of f~(z), with 
F'(k1)=F(k1)//tx. We see that the asymptotic (resonant) 
three-wave terms /f(x1,zi) vanish in the special case 
/ *(0)=0, when the kz=0 components of the wave packets 
are zero. Since this is a rather special case, we shall not 
consider this possibility further. 

Note that ff, given by Eq. (4), are bilinear functions of 
/+ and /". Hence, in order to obtain the leading-order ve- 
locity fluctuation caused by three-wave interactions, /+ and 
/" need to be distinguished. This distinction is not made in 
the first estimate of Eq. (2) to which we shall return later. 

IV. THREE-WAVE SPECTRUM: ANALYTICAL 

We note that the expression (5) for three-wave interac- 
tions preserves the z dependence of the zeroth-order fields. 
This implies that there is no energy cascade parallel to the 
magnetic field. However, as pointed out by NB, four-wave 
interactions do not generally preserve the z dependence of 

the zeroth-order fields and exhibit harmonic generation, and 
can, in principle, contribute to a parallel cascade. Since 
three-wave couplings are much larger than four-wave cou- 
plings for weak turbulence, we neglect the effect of a parallel 
energy cascade. Using Eq. (5), we can then calculate explic- 
itly the scaling of three-wave interactions. Specifically, our 
objective is to calculate the spectral indices of the three-wave 
fields as functions of the spectral indices of the zeroth-order 
fields. These functional relations should not be affected by 
the magnitude of the zeroth-order fields as long as we stay 
within the domain of validity of the weak turbulence ap- 
proximation. 

Imposing periodic boundary condition in x±, we can 
write 

fr(xj=I, fLe2vi{mx+ny), 
mn 

where /*„ are constants which define the spectral indices /J.± 

of the zeroth-order fields. We define the energy 

(6) E±= J (V±/i)
2 dxL=j E±(kx)dkx , 

with the spectral functions given by 

EAkJtkl"*  or |/±n|«(m2 + «2r(3 + ^)/4. 

Assuming that energy is distributed randomly in the zeroth- 
order fields according to these spectra, we now proceed to 
calculate the spectra of the first-order fields, as specified by 
Eq. (4). We rewrite the right-hand side of Eq. (5) as 

:S   «C« 2iri{mx + ny) (7) 

withF;n = Fmn/(277)2(m2 + n2), and note from Eq. (3) that 

F1(x1) = 2{[/1
+ ,Vi/:] + [/x- ,V2/+]} 

= "V    F     fi2m{mx + ny) 
ZJ   

l mnc » 
mn 

Gi(*x) = 2[/: ,tf ] = X Gmne
2^m*+»y\ 

mn 

By direct substitution, we obtain 

Gm„ = 2(277)22; fp,qfm-P,n-q(<l'n-pn) (8a) 
PI 

= 2(2^2 rpjl-p<n-q{pn-qm), (8b) 
PI 

and 

.-«-v    ^ pm + qn 
F;n = 4(27i)22 fU'm-P,n-q -^T^T {pn-qm) + Gmn 

(9a) 
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2V1    -    + pm + qn 
= 4(2-ir)   Zi fpjm-p.n-q   m2 ,  „2   ipn~ R™) - G mn . 

pq rn    -r- n m' + n' 
(9b) 

Note that F'mn is symmetric with respect to the exchange of 
the + and - indices, while Gmn is antisymmetric. Combin- 
ing Eqs. (7)-(9), we obtain 

"L = 4(27r)22/PV- 
pt 

pm + qn 
2 ,    2  (pn-qm). 

m +n 

(10) 

Now let the spectral indexes of u^„ be v±, i.e., 

|^J-(m2 + n2)-(3 + ^"4. 

We can estimate v± in two asymptotic regimes. For 
ß+>/j.-, since /*„ decays much faster than /~„ at large 
wave numbers, we only need to sum over the domain of 
small (p,q) in Eqs. (8a) and (9a) for large (m,n). For 
(m,n)>(p,q), we thus obtain 

Gmn*2(27r)2/^2 fn,Q(q>n-pn) 
PI 

= 2{2ir)2rmn{qm-pn), 

PI 

pm + qn 

'P'« m2 + n2 "1~4(2TT)
2
/^2 /;   ■-zäYZT (pn-qm) 

= 4(2Tr)^-„ 
2 _   pq(n2-m2) + (p2-q2)mn 

21     2 m +n 

where the overbar indicates average over the/^„ spectrum. It 
follows by inspection that 

v^*/i_,    v-'-jj.- — 2. (11a) 

Similarly for fj.+ <fj,_ , we obtain 

V+ — /JI+-2,    v_«-/x+. (lib) 

V. THREE-WAVE SPECTRUM: NUMERICAL 

The analytical estimates (11), although suggestive, can- 
not be assumed to hold in the regime /j,^a*fj.+ which is of 
considerable physical interest. Therefore, we treat this re- 
gime numerically, as follows. 

We calculate u*n by a pseudo-spectral method. We first 
assign random amplitudes /^„ for a given choice of zeroth- 
order spectral indices p,+. We then use fast Fourier trans- 
forms (FFT) to transform the data from spectral space to 
physical space. The nonlinear terms in physical space are 
evaluated by a finite-difference method. Finally, we find u*n 

by another FFT, and calculate the spectral index v+ by either 
measuring the slope of a log-log plot of the spectrum, or by 
using a least-squares fit. 

We remark that the numerical procedure discussed 
above is rather different from the procedure generally fol- 
lowed in incompressible MHD simulations that integrate for- 
ward in time the MHD equations of motion, and attempt to 
calculate the spectra, when possible, from a numerical iden- 
tification of an inertial range. Our approach is based on our 
rigorous analytical formulas for three-wave interactions,14 

E{kL):0o 

FIG. 1. The spectra of three-wave interactions calculated using different 
numerical resolution, with spectral index v+«=l and /u+=/i_=3. The spectra 
of the zeroth-order fields are also shown (arbitrary units). 

valid in the limit of weak turbulence, which we use to obtain 
the relation between the spectral indices. In doing so, we 
assume that the spectral forms of the zeroth-order fields are 
given, and infer the indices of the first^order fields from a 
numerical study based on our analytical formulas. 

In Fig. 1, we plot the spectra of the zeroth-order field 
fnn as well as the spectra of the first-order field u*n for 
increasing spatial resolution (from 642 to 20482) for the case 
/z+ = /u^ = 3. While the spectrum of the zeroth-order field is 
approximated very well by a straight line for almost the 
whole range of kx, the spectrum of the first-order field 
curves downward for large kL. Note, however, that as the 
spatial resolution is increased, the straight-line fit for the 
first-order spectra extends to larger values of kL, with v+ ~ 1 
for this case. Hence, it is reasonable to attribute the down- 
ward curve of the first-order spectra to the cutoff of the 
zeroth-order spectrum. As this cutoff is pushed to lower lim- 
its, the fit approaches a straight line to a higher degree of 
accuracy. 

For 20482 resolution, Fig. 2 shows a contour plot of 
v+ in the range of O^/x+^S. (We have also obtained, 
at lower resolution, numerical results in the larger 
range -3=5/^^20, but the spectra are less clean and not 
shown here.) Note that the contour of v_ is just that of v+ 

with the labels of /x* interchanged, since v_{ß+ ,/m_) 
= v+{/x_ ,/j,+). The spectrum of Gmn has also been calculated 
and is symmetric with respect to /J,± . It is found that the 
index of Gmn is given approximately by min(/i_ ,/x+) —2 and 

v + ~mm(/j,- + 2,/j. + ) — 2,     ^_~min(,u_ ,p.+ + 2) — 2, 
(12a) 

which is consistent with the asymptotic estimates (11). 
Moreover, for the case /J.+ = /J,_=/U,, we obtain 

v= v±~fj,^ — 2 = fj, — 2. (12b) 
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FIG. 2. Contour plots of the spectral index v^ calculated using a resolution 
of 20482 within the range 0«/ii»«5. 

Note that while the spectral indices of both F'mn and Gmn are 
symmetric with respect to fi+ and /JL„, that is not so for v+ 

or v_. This asymmetry is due to a significant cancellation 
between F'mn and Gm„ in the second term of Eq. (7). 

VI. DISCUSSIONS 

The results reported above are quite different from those 
expected by scaling arguments in Sec. II, which begin from 
the relation4'5 

s
Vk    kxuk 

Vk      *i|VV 
(13) 

Equation (13) is the first relation in Eq. (2), rewritten with a 
subscript A: on & as well as v in order to emphasize the 
assumption of local interactions. According to this assump- 
tion, the dominant contribution to Svk comes from vk which 
is an eddy of the same spatial scale (k~l), so that v-~2/j.-3. 
In contrast, the present calculation suggests that the scaling 
of the magnitude of the forward-propagating first-order field 
Svk  should be written 

Svk- 
k«V \\v A 

(14) 

where v ~ represents the average amplitude of the backward- 
propagating wave packet which includes the effect of all per- 
pendicular length scales (implying, in effect, nonlocal inter- 
actions in fc-space). We emphasize that zeroth-order fields 
with typical magnitudes v+ (propagating forward) and v~ 
(propagating backward) are uncorrelated since they are as- 
sumed to be Alfven wave packets coming in from two op- 
posite directions with different regions of origination. There- 
fore, we need to distinguish between v ~ and v + in a way that 
the heuristic scaling (13) does not. This point can also be 
appreciated by inspecting Eqs. (4) and (5), which are consis- 
tent with the scaling (14). If we regard v~ in (14) as a con- 

stant independent of kL, we recover the spectral index v+ 

given by Eq. (12b). Similar considerations also hold for v_ . 
On the other hand, if we impose the ad hoc requirement 

that v ~ and v + are dominantly correlated only for the same 
length scale k~\ then the summation in Eq. (10) will mainly 
pick up those local interaction terms so that 

[Note that the number of modes included in the summation is 
now proportional to (m2 + n2)y2.] We then have 

v+~v  ~fi + + p~-3, (15) 

which is the same as the estimate i>~2,u-3 obtained from 
Eq. (13) for the case ß+=/j.~. 

These subtle differences in scaling—obtained by impos- 
ing and relaxing the assumption of local interactions—have 
significant implications for the spectral index of the aniso- 
tropic energy spectrum. Let us explore some of these conse- 
quences by means of heuristic arguments. Following the pro- 
cedure in Sec. II, let Nk be the number of collisions needed 
to distort the wave amplitude vk with typical perpendicular 
wave number £x. Then Nk~{vkl Svk)2~EkIExk, where Elk 

is the energy spectral function of the first-order field due to 
three-wave interactions. Assuming that there is only a per- 
pendicular energy cascade, the energy transfer rate can be 
estimated to be 

NtT 

Svk 

vk 
*,,VA (16) 

which should be constant in the inertial range, with 
T
~(^II^

/
A)~

1
- If we use v2

k~EkkL and the estimate (13), we 
obtain the anisotropic IK spectrum Ek<*k12. In contrast, if 
we use the estimate (14), we obtain E^k^3. These results 
can also be obtained by an alternative argument, as follows. 
According to Eq. (16), we have ek^kxElk which suggests 
that the spectral indices p± should be chosen to correspond 
to v± = 1. By looking up Fig. 2 (and the contour of v_ which 
is, in fact, the same graph with the exchange of labels 
/Lt+«->'^_), we obtain the result fi± = 3> for v± = l. This result 
should be contrasted with the result /JL± = 2, or /x++/i~=4, 
obtained from Eq. (15) by heuristic arguments based on the 
local interaction assumption, as well as with the result /J.+ 

= 2 obtained by closure methods in the isotropic case.20 

The new anisotropic spectrum, which is steeper than the 
anisotropic IK spectrum, can also be obtained by dimen- 
sional analysis. We write the energy cascade rate of the for- 
ward propagating wave in the form e+~k1 
X£^(ü

_
)
2

(ä:||VA)
-1

, where we assume that Ek depends 
only on kL and that the wave number ktl appears always in 
the product with VA as a parameter. We also use Eqs. (14) 
and (16) to obtain the dimensional dependence onu". Di- 
mensional analysis then yields ar=3, /3=1, and v=3, which 
implies that Ek*k23 • 

We conclude this paper with a word of caution. The 
proposed scaling Ek*k^3 is obtained here by heuristic argu- 
ments after Eq. (13) is replaced by the more rigorous scaling 
relation (14). While we have provided analytical and numeri- 
cal justification of the scaling relation (14), we have not 
shown that the heuristic arguments used thereafter to deduce 
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the energy spectrum can be justified from first principles 
when the three-wave interactions are nonlocal. A critical 
evaluation of the validity of these commonly used heuristic 
arguments will require further analytical and numerical work 
and will be the subject of future research. 
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Finite-time vortex singularity and Kolmogorov spectrum 
in a symmetric three-dimensional spiral model 
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A recent analytical model of three-dimensional Euler flows [Phys. Rev. Lett. 69, 2196 (1992)] which 
exhibits a finite-time vortex singularity is developed further. The initial state is symmetric and contains 
a velocity null (stagnation point) which is collinear with two vorticity nulls. Under some assumptions, it 
is shown by asymptotic analysis of the Euler equation that the vorticity blows up at the stagnation point 
as inverse time in a locally self-similar manner. The spatial structure of the inviscid flow in the vicinity 
of the singularity involves disparate small scales. The effect of a small but finite viscosity is shown to 
arrest the formation of the singularity. The presence of spiral structure in the initial conditions leads 
naturally to the model developed by Lundgren [Phys. Fluids 25, 2193 (1982)] in which the gradual tight- 
ening of spirals by differential rotation provides a mechanism for transfer of energy to small spatial 
scales. It is shown by asymptotic analysis of the Navier-Stokes equation, that a time-average over the 
lifetime of the spiral vortex in the present model yields the Kolmogorov spectrum. 

PACS number(s): 47.27.Cn 

I. INTRODUCTION 

A fundamental problem in fluid dynamics is the deriva- 
tion of the Kolmogorov spectrum for incompressible tur- 
bulent flows from the Navier-Stokes equation. The Kol- 
mogorov scaling law [1], originally derived by dimension- 
al analysis, has been validated by several experiments and 
numerical simulations, but its theoretical derivation from 
the underlying dynamical equations has remained a chal- 
lenge for over 50 years. 

It is widely believed that a first step in the development 
of a dynamical theory of turbulence should be the 
identification of a mechanism by which energy in the 
large spatial scales can be transferred to the small scales. 
This has motivated the search for finite-time vortex 
singularities in three-dimensional Euler flows, since in 
two-dimensional flows that tend to zero at infinity and 
evolve from smooth initial conditions, the formation of a 
finite-time vortex singularity is forbidden [2-4]. 

Theoretical models that may yield finite-time vortex 
singularities in three-dimensional Euler flows have been 
the subject of many investigations, most of which are nu- 
merical [5-9]. Until 1990, the results were inconclusive 
despite the sophistication of the numerical methods em- 
ployed. Recently, finite-time singularities have been re- 
ported in axisymmetric flows with swirl [10,11], but 
doubts have been raised that the growth of vorticity ob- 
served in these studies may be exponential [12]. A relat- 
ed problem has been investigated by Childress [13], who 
has interpreted the occurrence of a finite-time singularity 
in a nearly two-dimensional flow as a signature of the loss 
of near-two-dimensionality. E and Shu [14] present a nu- 
merical study of two-dimensional Boussinesq convection 
(also studied earlier by Grabowski and Clark [15]) and re- 
port exponential growth of vorticity in those regions 
where Pumir and Siggia [11] find a finite-time singularity. 
Despite the depth of effort that has gone into these inves- 

tigations, it cannot be said that the issue of vorticity 
intensification in axisymmetric flows with swirl has been 
settled beyond doubt. E and Shu find that the growth of 
vorticity is much more intense on the side of a rising bub- 
ble than the cap where the growth of vorticity is found to 
be exponential. Caflisch [16] has presented a different 
viewpoint on this problem and has demonstrated the de- 
velopment of finite-time vortex singularities in a model of 
complex-valued axisymmetric flows with swirl. However, 
the singularities found by Caflisch do not occur where 
they do in Refs. [10] and [11], but at the centers of the 
rolls. Though Caflisch's results are mathematically in- 
teresting, there are questions regarding the relevance of 
his findings to the real dynamics of the Euler equation. 

In a way, the controversy surrounding the problem of 
axisymmetric flows with swirl encapsulates the difficulties 
involved in the search for finite-time vortex singularities. 
The question is not only how rapidly in time vorticity 
grows, but also where the singular growth of vorticity 
should occur. The first question involves dynamics, 
whereas the second involves geometry. In attempting to 
answer the second question, we adopt the point of view 
that vortex singularities will tend to occur near separa- 
trices. We arrive at this point of view, prompted by in- 
sights on the analogous problem of current singularity 
formation in magnetohydrodynamics (MHD). Though 
there are profound differences between the dynamics of 
magnetic fields in plasmas and velocity fields in Euler 
flows, there are some geometrical similarities. We discuss 
below some of the similarities and differences. 

Magnetic fields B are divergence-free, as are in- 
compressible velocity fields v. The analogy between B 
and v is most obvious when we consider steady solutions 
of the Euler equation 

vXo=VA ,   VXV = ö) , (1) 

where co is the vorticity and h =p/p + v2/2 is the Ber- 
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noulli function for a fluid of pressure p and density p. 
Equation (1) is analogous to the magnetostatic condition 
[17] 

JXB = Vp,   VXB = J , (2) 

where J is the electrical current density and p is the fluid 
pressure. A comparison of (1) and (2) suggests the analo- 
gy B+-W, J+-XO, p++hQ-h (where h0 is a constant). It is 
this analogy that has provided the basis for certain 
deductions regarding the properties of steady three- 
dimensional Euler flows in Refs. [18-22]. In Ref. [22], 
solutions of (1) that are topologically toroidal are con- 
sidered and it is demonstrated that 5-function vortex 
singularities can occur at the so-called rational surfaces 
of a nearly integrable velocity field. These rational sur- 
faces, on which the streamlines close on themselves, are 
the source of separatrices in a torus. The vortex singular- 
ities at the rational surfaces are exactly where current 
singularities occur in the toroidal solutions of a nearly in- 
tegrable magnetic field [21]. 

This analogy between B and v in steady state breaks 
down when we consider dynamics. In an ideal plasma, 
the magnetic field B obeys the induction equation 

— -VX(vXB) = 0 
bt 

(3) 

whereas the vorticity at (and not the velocity) obeys the 
(analogous) Euler equation 

^-VX(vXo) = 
dt 

■0 . (4) 

In other words, for dynamical evolution, the appropriate 
analogy is B+^co (to be contrasted with J-^co in steady 
state). The ramifications of this dynamical analogy have 
been partially explored in Refs. [19-22] and has prompt- 
ed Greene [23] to suggest ". . .that an essential aspect of 
turbulence is that it is a dynamo for vorticity 
amplification. . . ." It is because of this analogy that 
mathematical methods used in MHD have proved to be 
valuable in obtaining new stability results in Euler flows 
with stagnation points [24,25]. The analogy suggests that 
since in MHD magnetic-field nulls are a possible source 
of separatrices [26,27] where singular currents tend to 
grow, the neighborhood of vorticity and velocity nulls are 
possible sites for singularity formation in three- 
dimensional Euler flows. 

Recently, we have proposed an analytical model [28] of 
three-dimensional Euler flows containing nulls. The ini- 
tial state of this model (discussed in Sec. II) is symmetric 
and has a stagnation point at the origin, flanked by two 
vorticity nulls. The straight line joining the two vorticity 
nulls intersects the stagnation point at the origin, which 
is preserved for all times by the flow. In Ref. [28] we 
have attempted to show that this model yields a finite- 
time singularity by means of a multiple-scale analysis un- 
der some strong assumptions regarding the form of the 
solutions. In Sec. Ill we give a modified version of this 
analysis that makes the derivation of the singularity more 
transparent. The modified analysis, which is carried out 
to   higher   order,   demonstrates   that   there   are   two 

disparate spatial scales in the neighborhood of the stagna- 
tion point. As in Ref. [28], we find that the vorticity 
blows up as {tc-t)~l at the stagnation point in a locally 
self-similar manner within a collapsing inner region. 
While the velocity remains bounded in the inner region, 
it blows up as [tc-trul in a surrounding region where 
the flow violates the self-similar scaling of the inner re- 
gion. 

The results obtained in Sec. Ill by the perturbative 
analysis motivate a more general treatment of stagnation 
point flows (Sec. IV) in which the pressure is calculated 
self-consistently by a (nonlocal) integral relation involv- 
ing the velocity. This generalized treatment enables us to 
consider a wider class of initial conditions (of finite ener- 
gy) than that considered in Sec. III. The results of Sec. 
IV support the results obtained in Sec. Ill and further- 
more suggest that there are broadly two types of vortex 
singularities that can be realized with initial conditions of 
high symmetry. 

In Sec. V, we study the models discussed in Sees. Ill 
and IV in the complex spatial domain, following the re- 
cent treatment of Tanveer and Speziale [29].  In this ap- 
proach, the Euler equation is continued into the complex 
unphysical domain. Since a class of smooth and bounded 
initial conditions in the real physical domain can be 
singular when analytically continued into the complex 
unphysical domain, the question of finite-time singulari- 
ties in the real physical domain can be reduced to the 
question  of whether the singularities in the complex 
domain reach the real domain finite time. The analytical 
framework developed in Ref. [29] is based on a crucial set 
of assumptions that have not been shown to hold in gen- 
eral. Whether these assumptions hold for the symmetric 
dynamics considered in this paper also remains unproved. 
However, the approach of Tanveer and Speziale does 
reproduce the two disparate small scales found by the 
asymptotic analysis of Sec. III. 

We discuss in Sec. VI that the analytical results of 
Sees. III-V do not violate the rigorous constraints due 
to Constantin and Fefferman [30,31]. However, we point 
out that the relevant theorems in Refs. [30] and [31] are 
proved under a specific assumption that appears to be 
violated by self-similar flows and hence it is questionable 
whether these theorems are directly applicable to our 
model. 

One of the interesting features of the smooth initial 
state in Ref. [28] is the presence of spiral structures. 
Though the spiral structure does not play a significant 
role in the inviscid evolution of the flow, its occurrence is 
reminiscent of the strained vortex model of Lundgren 
[32-34]. In Lundgren's model, nonaxisymmetric 
coherent vortices with spiral structures interact with 
each other only through the mediation of an axisym- 
metric, background straining flow. By means of detailed 
asymptotic analysis, Lundgren demonstrates that the 
Kolmogorov spectrum then follows from the Navier- 
Stokes equation. 

Lundgren's discovery, and the natural presence of 
spirals in our model, motivates us to investigate the effect 
of viscosity (Sec. VII). It is shown that the presence of 
viscosity arrests the formation of the finite-time vortex 
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singularity in our model. As the vorticity intensifies at 
the velocity null, the tightening of the spirals in our ini- 
tial state provides a mechanism for transfer of energy 
from the large to the small spatial scales. An asymptotic 
analysis based on the Navier-Stokes equation leads us 
quite naturally to Lundgren's considerations and we too 
obtain the Kolmogorov spectrum. Viewed in its totality, 
the present model possesses some features that enhance 
Lundgren's conception. In particular, the model de- 
scribes the dynamics of a three-dimensional (but sym- 
metric) flow that evolves from smooth initial conditions 
and tends to a finite-time singularity (which Lundgren's 
model does not). Subsequently, viscosity thwarts the for- 
mation of the singularity and yields the Kolmogorov 
spectrum (as Lundgren's model does). Thus the present 
model can claim to capture some features of decaying hy- 
drodynamic turbulence. 

II. INITIAL CONDITIONS 

At t =0, we consider a symmetric flow u of the form 

ux=f(y) , (5a) 

uy=f(z) , (5b) 

uz=f(x) . (5c) 

For specificity, we choose 

.2 

f(x) = u0— exp 
zx 

(6) 

where u0 and a0 are positive constants and e is a small 
and positive parameter (i.e., e «1) that separates the lo- 
cal scale a0 from the larger scale of the globally extended 
Gaussian envelope of width e_1/2a0. The origin is a stag- 
nation point or a null of the velocity field. Near the ori- 
gin, we have 

u=x-(Vu)0 , 

where the tensor 

(Vu)0=/'(0) 
0 1 0 
0 0 1 
1 0 0 

(7) 

(8) 

has the eigenvalues k0=f'(0) and X± 

=f'(0) exp( ±i2TT/3 ). According to the standard nomen- 
clature [35,36] since /'(0) = u0/a0>0, this null is of type 
As. Near the null, the eigenvectors for the complex ei- 
genvalues A.+ lie on the 2 ,   surface, which is the stable 

s 

manifold, whereas the eigenvector for the real and posi- 
tive eigenvalue X0 lies on the y A line, which is the unsta- 

ble manifold. The subscript s denotes the spiraling trajec- 
tories of the streamlines into the null in the 2 A surface. 

From the relation a = VXu,we obtain 

cox = -f'(z)-- 1- 
Izz1 

exp 
ez 

(90 

oy = -f'(x)= 

1- 

2ex2 

«5 
2zy2 

exp 

exp 

zx 

121 

(9b) 

(9c) 

At the origin, cox =a>y=a>2 = — u0/a0. It follows from 
Eqs. (9) that the vorticity has two nulls at 
x =y =z =±aQ/V2z = a±. The vorticity null 
x =y =z =a+ is of type As, whereas the null 
x =y =z =a _ is of type Bs. A null of type Bs is charac- 
terized by one real, negative eigenvalue and two complex 
eigenvalues. The eigenvector for the real, negative eigen- 
value lies on the yB  curve, which is a stable manifold. 

The eigenvectors for the two complex eigenvalues lie on a 
two-dimensional plane that coincides with the 2B sur- 

face, which is an unstable manifold. 
Expanding Eqs. (5), (6), and (9) in Taylor series, we ob- 

tain 

"x =-so>' 

"j, =s0z 

uz^s0x 

1- zy 

ez 

zx 

4 
whence 

a)r — — Sr, 1- 
3ez2 

(ü, 

?>zx' 

3zy' 

+ 0(z2) . 

+ 0(e2) , 

+ 0(e2), 

+ 0(e2) , 

+ 0(e2) , 

+ 0(z2) , 

(10a) 

(10b) 

(10c) 

(11a) 

(lib) 

(lie) 

where s0 = u0/a0. The symmetry of the initial conditions 
singles out the x —y =z line as a natural axis. We intro- 
duce a _new coordinate system (x',y',z'), where 
z' = (l/V3)( 1,1,1) and x',y' are two mutually orthogo- 
nal unit _vectors in the plane normal to z', with 
x' = (l/V6)(-1,-1,2) and y' = (l/V2)(l,-l,0). The 
initial flow (10) can be written as 

+ 0(e).     (12) 

Defining   x' = r'cos(0' + ir/6),   / = r'sin(0' + 7r/6),   Eq. 
(12) can be transformed to 

«*• -1/2     V3/2   0 x 

Uy. =s0 
-V3/2   -1/20 y 

"*' 0            0       1 z 

u= 
"r -r/2 

"9 = «0 -(Vl/2)r 

u, z 
+ 0(E) , (13) 
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where we have dropped the primes for notational con- 
venience. As noted in Ref. [28], Eq. (13) is axisymmetric 
to leading order. The departure from axisymmetry and 
the spiral structure is manifest at higher order. The ini- 
tial vorticity is given by the expansion 

(0 = -V350 

0 

0 

lllj 

£Z 
r 

-Vlr 
—z 

er 

Vial 

sin3ö 

cos30 

V2 

+ 0(e2) (14) 

In what follows, we shall investigate the time evolution of 
the initial state described above according to the Euler 
equation 

3<u 
3r 

+ uV<u = <aVu . (15) 

Here we have done away with the so-called background 
flow considered in Ref. [28], which is inessential for 
singularity formation. 

III. PERTURBATIVE SOLUTIONS 

The localized flow u obeys the symmetry relations 

ux(x,y,z) = uy(z,x,y) = uz(y,z,x) . (16) 

Since these symmetry relations are assumed to hold at 
t = 0, they hold for all times [37]. We consider solutions 
of the form 

ux(x,f) = s2(x,f)>>exp 

uy(x,t)=s3{x,t)zexp 

wz(x,f)=51(x,r)xexp 

,2 

af(x,f) 

z2 

a](x,t) 

(x,r) 

(17a) 

(17b) 

(17c) 

The six functions on the right-hand side of (17) are con- 
strained by the incompressibility condition and the (two) 
symmetry relations (16). Exploiting the presence of the 
small parameter e in the initial conditions, we seek solu- 
tions of the form 

(18a) 

(18b) 

ai=a{t) + z3i(x.,t) , 

s.=sU) + es,(x,f) , 

u =u'0) + eu'u + O(e2) , 

jifl = «(
fl
0,+e«(

fl
u+O(e 

.(0). + ewju + 0(e2) , 

and 

where a(0) = a0 and s(0) = s0. The form of Eq. (18) is 
based on the assumption that the solutions are locally 
self-similar. The solutions are not globally self-similar; 
the space dependence of the higher-order terms in Eq. 
(18) preclude such a possibility. 

For the initial conditions discussed above, we develop 
solutions of the Euler equation by a formal perturbation 
expansion. We write 

Ö>r = ö)«0, + Eö>,
r
,) + O(e2) , 

a)e=4
0)We

u + O(e2) , 

COZ=CO[
0)

 + ECO[" + OU
2
) . 
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(19a) 

(19b) 

(19c) 

(20a) 

(20b) 

(20c) 

Using the symmetry relation (16) and the assumption of 
local self-similarity, the leading-order solution for the ve- 
locity can be written in the form 

u ,(0). 

, (0) 

,(0) 

,(0) 

=s(t) 

-r/2 

(V3/2)r 

z 

(21) 

Then the z component of the leading-order Euler equa- 
tion (15) for coz

0)=-V3s(t) yields 

da> (0) 

or 

3r 

as 
3r 

-=W,0) 

Equation (23) has the exact solution 

1 
5 =   , 

t-t 

(22) 

(23) 

(24) 

which yields a finite-time singularity at tc = 1 /s0 = a0/u0. 
The singularity occurs in a locally self-similar manner in 
the neighborhood of the velocity null. For all times prior 
to the blowup of vorticity, there exists a small region sur- 
rounding the velocity null where the solution is invariant 
under the scaling x^cx, u^u,r->cr, where c is a con- 
stant. In this (shrinking) region, the solutions 
Ux=y/(tc-t)t Uy=z/(tc-t), and uz=x/(tc-t), which 
yield cox=cDy=coz = -(tc-tr\ satisfy the Euler equa- 
tion (15) exactly. 

It    is    useful   to   calculate    the    pressure    Hessian 
■ = d2p/dxidxj for the leading-order solution.   We ob- 

tain 

0   s2   s2 

s2   s 

0   s2 

2    0 

(25) 

Whereas the diagonal elements, which represents the lo- 
cal contributions to the pressure Hessian, are zero, the 
off-diagonal elements, which represent the nonlocal con- 
tributions, are nonzero (and eventually blow up). Hence 
the present model cannot be described by the so-called 
"restricted Euler system" of Leorat [38], Viellefosse 
[39],     and     Cantwell     [40],     who     assume     that 
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iry = (d2p /dxkdxk)(Sy /3). 
We now consider the first-order solutions. To this end, 

we note that Eqs. (21) and (24) yield the leading-order La- 
grangian equations 

4L- 
dt 

= „(0)=. 

dd     "( 
dt        r 

2{tc-t)  ' 

VI     1 
2   t-t 

dt 
-Ui0) = - 

t-t 

which can be integrated to give 
1/2 

r=rn 
h~t 

t. 

V3   rt 
0 = 90 f-}  dfs(t') 

and 

z—zn 
tc~t 

respectively. 

ponent of the) first-order Euler equation 

3^,(1) 
-r£- + (u-V<üz)

(1) = (ö-Vwz)
m . 

dt z z (28) 

Motivated by Lundgren [32], we introduce the variable 
(26a)      transformations 

(26b) 

(26c) 

(27a) 

(27b) 

co[x\r,9,z,t)=S(t)Ü(^,v,T) , 

uz
A)(r,d,z,t)=Sxn(t)M^,v,T) 

where 

S(f)=exp ( f'dt's(t') 

(29a) 

(29b) 

(30) 

is the total stretching in time t and the variable £, #, v, 
and T are defined, respectively, as 

^=e+~ f'dt's(t'), 
1     J/l 2   Jo 

v — z/S , 

(27c)       and 

T= f'dt'S(t') 

Writing ia=/'+£(i)"+ • • ■, we obtain the (z com-      We now calculate the various terms in (28): 

(31a) 

(31b) 

(31c) 

(3 Id) 

da, 

dt dt        dt dt dt dT      2 

da[X)       _ dcol" 
+ V3- 

a*'1'    y-da[l) 

—— + V2,—— 
a# 

d£ |a# 

dco[l) 

deal 
-sv- 

dv 

3£ 
+ SV- (u-V^'W^V^W^V^'W01-^'1^-^ 

du{1) 3A 
(ö-V«J(1)=fö

(1)-VI/i
0)+a>(0)-Vz

1)=^z
1)-v^s^-==541)-V3s5-I/2^L. 

az of 

Using Eqs. (32), the first-order Euler equation (28) can be reduced to 

an _  v- l   3A 

dT S3/1 dv   ' 

As t-+tc, the term on the right-hand side of (33) can be neglected. Hence, in this limit 

an 
dT 

which implies that 

Cl = Cl(g,ö,v) = n0(§0(£,0,v),d0(£,e,v),v0(£,0,v)) , 

where 

dv 

= 0, 

flo=ü>z
1)(r,0,z,O) = S(r,0,z)=V3so 

r2+z2 

is the initial condition for the higher-order solution. Using (29a), we can write 
11/2 

co[
z
i\r,d,z;t)=S(t)w 

tr-t 
,e+-T-J  dt's(t'),z 

1     •' n 2   Jo 

tr-t 

at, l'o 
f's(t')dt' 

tr-t 
+z> 

tr-t 

f. 

(32a) 

(32b) 

(32c) 

(33) 

(34) 

(35) 

(36) 

(37) 
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If follows by inspection of Eq. (37) that the first-order      order terms, i.e., 
solution has a small radial scale, collapsing as (t 
while it stretches axially along z. The collapsing small ra- 
dial scale of the first-order solution is thus different from 
the small scale of the leading-order solution, collapsing as 
(tc-t). 

The structure of the small scale obtained above can be 
understood simply by invoking the law of conservation of 
vorticity strength [41]. We consider a "long-thin" cylin- 
drical   vortex   tube   of   strength   cazA= const,   where 

--nr2.      Since     coz<x{tc-t)~ it     follows     that 
_fll/2 r cc (t —r)"2. While the velocity is bounded in the inner 

region, which collapses as (tc~t), the Lagrangian equa- 
tions (26) imply that the velocity must blow up on the 
"larger" small scale, which collapses as (tc — t)ul. 

The analysis given above is perturbative and we have 
not obtained closed-form solutions. The calculation has 
been essentially carried through the first two orders, 
which make it apparent that more than one small spatial 
scale is involved in this inviscid problem. It is possible to 
extend the calculation, in principle, to higher orders, but 
the equations are complicated and do not seem amenable 
to an analytical solution. 

A pertinent question is whether the singularity ob- 
tained in our model is unphysical since the initial flows 
have infinite total energy. As discussed in Ref. [42], this 
is indeed a limitation of earlier investigations of two [42] 
and three-dimensional [43] solutions of the stagnation- 
point form. We emphasize an important difference be- 
tween our system of flows and those considered in Refs. 
[42] and [43]: in our initial conditions, the velocity (and 
vorticity fields) are bounded everywhere, including points 
at infinity. This means that the energy density is initially 
finite everywhere, including points at infinity. Infinite en- 
ergy is obtained in our initial conditions merely because 
our system size is infinite, but the finite-time vortex singu- 
larity is not an artifact of the infinite system size. 

It is well known that the Euler equation is an integro- 
differential system. (For instance, the velocity must be 
calculated self-consistently from the vorticity by carrying 
out an integration over the whole space with suitable 
boundary conditions). In Ref. [28] a lengthy analysis 
(which will not be repeated here) is given to match "lo- 
cal" flows of the form (17) to a "global" symmetric flow 
of general functional form. We assume here that such 
global solutions do exist (that is, they satisfy the integro- 
differential system). To further strengthen this con- 
clusion, we give a generalized analysis in the next section 
that treats the integro-differential system explicitly. 

IV. GENERALIZATIONS OF THE MODEL 

The model discussed above can be generalized by keep- 
ing its basic symmetric features, but allowing for a more 
general form of the solution. We write 

u(x,t) = [u(x,y,z,t),u(y,z,x,t),u(z,x,y,t)] (38a) 

and assume that in the vicinity of the origin the Taylor 
expansion of the flow exists and that it only has odd- 

u(x,y,z,t)=    2    aimn^)xlymzn , 
l,m,n >0 

(38b) 

where almn{t) = Q if l+m+n is even. [Specifically, it is 
reasonable to assume that the Taylor series is convergent 
for |x|<8U), where 5 is finite and we allow 
5(f—»rc )->-0. ] The symmetry relations (38a) ensure that 
we have a velocity stagnation point at the origin for all 
time since the Euler equation preserves these relations, if 
satisfied initially. We also assume that u(|x|—►<», 
f=0)-*0 sufficiently rapidly that the initial flow has 
finite energy. Then flows with bounded energy can be 
constructed by treating the Euler equation as the 
integro-differential system 

3U   _l_ T7 

9r 
V-(u-Vu) 

(x,f) = —-J -j 7 ■du' 

(39a) 

(39b) 

where p=l and the condition V-u = 0 is satisfied, once it 
is so initially. It is easy to see that the pressure p is still 
finite at large x even if u has a locally self-similar singu- 
larity, because such a singularity occurs only in a volume 
that also tends to zero. This ensures that the flow will 
remain vanishingly small for large x and thus the total 
energy will remain finite for all time, since it is so initial- 

ly- 
We consider the general form of the first order expan- 

sion of u, 

u(x,y,z,t) = b(t)y +c(t)z +0(|x| (40) 

which is consistent with the condition V-u = 0. The vor- 
ticity co = V X u is then 

<y=-S(l,l,l) + 0(|x|2) , (41) 

where a> = b —c. Also, the dissipation rate per unit mass 
is given by 

_ 1 3u,      dii; 

bxj 
+ 

3x, 
= 3vcr2 + 0(!x| (42) 

where a = b+c. In the cylindrical coordinates intro- 
duced in Sec. Ill, Eqs. (40) and (41) can be written, re- 
spectively, as 

"r 

"fl = 

"z 

-or/1 

-(V3/2)ör 

CTZ 

+ 0(|x|3) 

and 

j=-v/3Sz + 0(|x|2) . 

(43) 

(44) 

Because of the symmetry of the flow, the pressure term 
can be expanded in the form 

p = -d(x2+y2+z2)-e{xy+yz+zx) + 0(\x\*) .      (45) 
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Equation (45) implies that the pressure Hessian irtj has 
diagonal as well as off-diagonal elements, all of which, in 
general, can be important in supporting a finite-time 
singularity. Whereas the diagonal elements, each propor- 
tional to d, are determined self-consistently from local 
properties of the velocity [i.e., they directly enter the 
differential form of Poisson's equation V2p = 
— V-(u-Vu)], the off-diagonal elements, each proportion- 
al to e, are determined by the global properties of the 
flow. If we transform to cylindrical coordinates, the pres- 
sure tensor becomes diagonal but not isotropic. Substi- 
tuting Eqs. (43) and (45) into Eq. (39a), we obtain the ex- 
act equations 

d =bc , 

b+c2=e , 

c+b2 = e , 

(46a) 

(46b) 

(46c) 

where an overdot indicates the derivative with respect to 
time. For self-consistency, e must be calculated using 
Eqs. (39b) and (45): 

, = --&_ 
bxby x=0 

=-/ 
d2G(x,t) d3x 

dxdy      |x| (47) 

where G =V-(U-VU)/4TT. Equations (46b) and (46c) can 
be rewritten as 

a> = mo , (48a) 

<7=2e-(a2 + a2)/2 . (48b) 

From the form of Eqs. (48a) and (48b), it is easy to see 
that finite-time singularities in a> and a can occur due to 
the presence of the nonlinear terms for many different 
functional forms of e. We discuss some interesting exam- 
ples below. 

We consider the case in which the flow is assumed to 
have the self-similar form 

n(x,t)=b[(y,z,x)+a\1(x/a)] 

+ c[{z,x,y) + av2(x/a)] , (49) 

where a is a function of time only and v, and v2 are two 
dimensionless functions with no first-order terms in their 
Taylor expansions. Then it can be shown by dimensional 
analysis of Eq. (45) that 

e^c^ + cjbc+cic1 , (50) 

where cuc2,ci are constants that can be determined once 
the functional forms of v, and v2 are known. There are 
numerous choices one can make for c, and the initial 
values of b and c that yield singular solutions for Eqs. 
(46b) and (46c). For example, if we take 

(51) 

(52) 

Ci = l,   b(0) = l/te,   c(0)=0, 

then we get 

b=a>=a = \/(tc-t) , 

which is the solution obtained in Sec. III. 
We now consider slightly more general solutions. Let 

us assume that the flow is quasi-self-similar, i.e., u can be 
approximated by Eq. (49) plus a slowly evolving back- 
ground flow so that 

e=clb
2 + c2bc+cic

2 + c4b+c5c+c6 , (53) 

where c, are slowly varying functions of time (much be- 
fore the blowup time tc). As the solutions evolve from 
different smooth initial conditions to a self-similar asymp- 
totic state, we find that there are two types of singular 
solutions: 

(i)   a- 

(11)   a- 

1 

k 

,   S=£0 

|S/CT|-*0 

This can be seen by substituting b=kl/{tc-t) and 
c=k2/(tc-t) into Eq. (50) [or (53)], whereupon using 
Eq. (46b) [or (46c)], we get 

(kl-k2)(k1+k2-l)=0 . (54) 

Type (i) and (ii) singularities are realized, respectively, 
when the second and first factors are set equal to zero. 

Type (i) and (ii) singularities can also be obtained by 
considering a self-similar solution to the Euler equation 
of the form 

u(x,t)=-~-\(x/a),   a(t)=n(te-ty . (55) 

The curl of Eq. (39a) yields 

VX[(l-p)V(X) + (/>X + V)-VV] = 0, (56) 

where X = x/a. Let 

V = [BY + CZ,BZ+CX,BX+CY] + 0(\X\2) ; (57) 

we then have 

(B-C)(B+C-l) = 0, (58) 

which is similar to Eq. (54). 
In writing Eq. (55), we have assumed the global ex- 

istence of a divergence-free function V(X). One way to 
test this assumption is by rewriting Eq. (55) in the form of 
an integral equation 

V(X) =—— r V'X[|pX' + V(X')|-V'V(X')1X(X-X') 
|X-X'| ■dX (59) 

which may be tractable numerically. This is a well-posed 
problem, but we will not try to solve it here. 

The model analyzed in Sec. Ill is a special case of [i) 
with c =0 and leads to a finite-time vortex singularity at 

the origin. At first glance, case (ii) may appear to violate 
the Beale-Kato-Majda constraint [44] that the maximum 
vorticity of a flow with an algebraic finite-time singularity 
has to blow up at least at fast as (tc -t)~

l. However, this 
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is not necessarily so. Since both b and c blow up at a rate 
proportional to (rc-r)_1, it is clear by inspection of (49) 
that the maximum vorticity due to higher-order terms 
must also blow up as (rc-f)_1 if VX(v1 + v2)^=0, which 
is generally the case. (A more precise statement is given 
at the end of Sec. VII.) 

Whereas the model considered in Ref. [28] (and Sec. 
Ill) is a singular solution of type (i), the singularities ob- 
tained in the high-symmetry numerical experiments of 
Refs. [45] and [46] are examples of type (ii). Consider, for 
example, the singularity obtained by Kerr in a numerical 
study of two interacting, antiparallel vortex tubes [45]. 
Because of the symmetries of Kerr's initial condition, the 
velocity and vorticity remain zero at the point xc where 
the singularity eventually develops as the two tubes ap- 
proach each other. The Taylor expansion of the flow 
about x,. can be written as 

\ = [alx,a2y, -(a{+a2)z] + 0{\x\ (60) 

where a^dj^?, are constants. We note that the |x|2 

terms in Eq. (60) do not affect the analysis given above as 
long as v(x = 0) is fixed at zero. Then it follows that in 
Kerr's geometry a self-similar singular solution should 
occur with maximum vorticity blowing up as (tc — t)    . 

We conclude with some numerical examples. With e 
given by (50), we plot in Fig. 1 an example of a type (i) 
singularity, with c, =0.9, c2= -0.9, c3 = -0.99, and the 
initial conditions M0)= 1 and c(0) = 0.5. In Fig^2 we 
plot an example of a type (ii) singularity, with Cj = 10.1, 
c2 = —1.3, c3 = —1.45, and the initial conditions M0)=1 
andc(0)=1.0e-06. 

log10(fc-0 

FIG. 1. Example of a singular solution of type (i) where both 
S and a are proportional to \Atc — t) using constants c, =0.9, 
Cj = — 0.9, and c3 = -0.99 with initial values M0)=1 and 
c(0) = 0.5. The constant tc is found to be 0.9495. 

log10(rc-0 

FIG. 2. Example of a singular solution of type (ii) where 
a=l/{tc — t) and S>/a-*0 using constants c{ = 10.1, c2 = — 1.3, 
and c3 = -1.45 with initial values M0)=1 and c(0)=10"6. 
The constant tc is found to be 0.1153. 

V. SINGULARITY DYNAMICS 
IN THE COMPLEX SPATIAL DOMAIN 

As mentioned in Sec. I, Tanveer and Speziale [29] have 
proposed a method for investigating the singularity dy- 
namics of the Euler equation in the complex physical 
domain. In this method, a class of smooth and bounded 
initial conditions in the real physical domain is analyti- 
cally continued into the complex unphysical domain 
where there are complex singularities. Then the question 
of finite-time singularities in the real physical domain can 
be reduced to the question of whether the singularities in 
the complex domain reach the real domain in finite time. 

The method proposed by Tanveer and Speziale [29] is 
based on some important assumptions that have not been 
shown to be valid in general. The method has been used 
successfully to obtain sufficient conditions for stability for 
a class of three-dimensional Euler flows identical to those 
found earlier by WKB methods [24,25]. In what follows, 
we suggest that some of the assumptions in Ref. [29] can 
be relaxed and that the method can be applied to our 
symmetric initial condition to obtain useful insights. 
There are open mathematical questions that we do not 
settle here, but since we state our assumptions clearly, it 
is our hope that the validity of the framework of Ref. [29] 
in the context of our model can be determined by further 
work. 

For the purpose of this section, we consider x to be a 
complex variable and consider initial conditions for 
which the velocity and vorticity are real and analytic 
everywhere for real x. However, the initial condition has 
complex singularities at the surface 

d(x,0) = 0 , (61) 

where d(x,0) is a real and positive analytic function for 
real x. Following Ref. [29], we take the initial conditions 
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for the velocity and the vorticity to be of the form 

n(*.0) = v,(x,0)+/[rfU,0)]q(x,0) (62) 

and 

®(x.0)=ö)J(x,0)+/'[£/(x,0)]p(x,0) , (63) 

respectively, where f(d) is a function to be specified 
Tanveer and Speziale assume that 

f(d)=da,   0<a<l (64) 

In (62) and (63), vI(x,0),oJ(x,0)>q(x,0), and p(x,0) are 
real and analytic functions of x that obey the equations 
V-v;(x,0)=0,VXvs(I,0) = oj(x,0), and VX[/q(x,0)] 
-7'p(x,0). It is claimed in Ref. [29] that for t >0, the 
complex solutions 

u(x,r) = vJ(x,?)+/[rf(x,r)]q(x,r) , 

<°(x,t)=<os(x,t)+f'[d(x,t)]p(x,t) 

may be constructed with 

V-v,(x,f)=0 , 

VXvi(x,r)=ü)s(x,r) , 

d<os 
~+vs-Va>s=cos-Vvs , 

(65) 

(66) 

(67) 

(68) 

(69) 

with p and q satisfying Eqs. (21), (22), and (25) of Ref 
129]. The singular surface d (x,?) = 0 is evolved according 
to the equation 

dd(x,t) 
dt + vs-Vd(x,t) = 0 . (70) 

Equation (70) implies that the singularities of a(x,t) for 
f>0 are determined by the relation d(x,t)=0. Thus 
Tanveer and Speziale obtain the surprising result that the 
location of the singularities in the complex domain can be 
determined from the smooth velocity field vs(x,r) without 
the need to solve for p(x,t) and q(x,t), assuming that 
they exist. Tanveer and Speziale demonstrate that no 
complex singularity can reach the real domain in finite 
time if the variables p,q,Vj, or as are smooth and devel- 
op no spontaneous singularities. 

There has been some criticism [47] of Eq. (70) on the 
ground that it does not capture the nonlocal effect of 
pressure. We point out that whether that is so depends 
on the choice of v,(x,0) and m,U,Q), which influence the 
solutions of Eqs. (67) and (68) and hence the solution for 
d(x,t). Furthermore, the nonlocal effect of pressure also 
enters into the equations for p and q that are assumed to 
exist. 

A key difference between the considerations of Ref 
[29] and what follows here is that we choose an exact but 
singular solution of the Euler equation for v and a   i e 

v =• 
1 

-r/2 

-V3/2V 
z 

(71) 

© = —- 
VI 
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(72) 

Though motivated by our real analysis in Sec. Ill, the 
choice (71) does not rely in any way on the validity of 
that analysis. In order that u and a remain bounded ini- 
tially for large |x|, we assume that f(d(x)^oo )-^l and 
furthermore that 

q(x,0) = q,(x,0)-vJU,0) , (73) 

where q,(x,0) is smooth and decays to zero as |x|-»oo. 
We choose 

f(d)=l-exp(-da),   0<a<l . (74) 

Equation (74) gives /(0) = 0,/'(0)-> 00, which enables us 
to carry through with the approach of Ref. [29], assum- 
ing that there exist well-behaved solutions p and q, satis- 
fying Eqs. (21), (22), and (25) of Ref. [29], such that the 
complex singularities in (66) will not be canceled. We are 
not able to show definitely whether this assumption is 
true, because it involves proofs of existence of solutions 
to the cited partial differential equations of Ref. [29]. 
Further analytical and numerical work will be required to 
settle this issue. 

The relation d(x,t) = 0 is satisfied by complex points 
x(t), which obey the characteristic equation 

dx(t) 
dt 

= vs(x(t),t) , (75) 

subject to the initial condition (61).   A solution of this 
equation is 

d(x,t) = - r2+z2 ' te-t 3 

+ b2(0) 
tc~l 1 

tc    \ 

(76) 

for t <tc. We see that at t =0, complex singularities in 
vorticity occur on a cylindrical manifold, defined by 

r2+z2 + b2(0) = 0 . (77) 

For t > 0, the coordinates of the movable singularities are 
determined by setting the right-hand side of Eq. (76) to 
zero. On the z =0 plane, we have 

r(t) = ib(t) = ib(0)[(tc-t)/tc] 1/2 
(78) 

Equation (78) suggests, remarkably, that not only do the 
complex singularities on the z =0 plane reach the origin 
(stagnation point) in finite time, but that they do so at a 
rate proportional to (tc~t)W2. [From Eqs. (70) and (76) 
it might appear, upon first glance, that d(x = 0,t) = const 
for all time. However, this would not be a correct infer- 
ence from Eq. (76), which holds only for t < tc. At t =tc, 
the velocity v,(x = 0,f) is no longer zero but become's 
singular.] Here bit) defines a small space scale in the 
complex spatial domain that is distinct from the collaps- 
ing small scale of the flow vs. These results are consistent 
with the results obtained in Sec. III. 
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VI. REMARKS ON THE 
CONST ANTIN-FEFFERMAN THEOREM 

Constantin [30,31] and Fefferman [31] have recently 
proved that "if the direction of vorticity is sufficiently 
well behaved in regions of high vorticity magnitude, then 
the solution is smooth." (The words "sufficiently well 
behaved" have a technical meaning that we consider 
carefully later.) This result imposes strong constraints on 
the possible singularities of the Euler equation. The crux 
of the theorem is in the relation [30] 

cf|<a] _ 
dt 

ar\co\ (79) 

where 

ac(x,r) = j-p/^jZ)(y,fi(x+y,r),©(y,r)) ,    (80) 
4TT    "    | y i 

a = co/\co\ is the unit vorticity vector and D is 

D(e1,e2,e3) = (e1-e3)[Det(e1,e2,e3)] . (81) 

Since D vanishes if any of the column vectors in the 
determinant are parallel or antiparallel, spatial alignment 
or antialignment depletes the growth of vorticity, elim- 
inating the possibility of a singularity. This is what hap- 
pens in two dimensions globally. In three dimensions, in 
the neighborhood of a potential singularity, if D is too 
small, then it is not possible to support the singularity. 
This underscores the importance of infinite spatial gra- 
dients or small scales. 

In view of the relation (79), the qualitative conclusions 
of the Constantin-Fefferman theorem are physically com- 
pelling. The question then is how our model measures up 
against this theorem. In Sees. Ill and V, we have estab- 
lished the growth of small scales. In particular, Contan- 
tin [30] shows that if the vorticity blows up self-similarly 
as 

co{x,t)z 1 
t,-t 

1 
A(X) , (82) 

where a=p{tc — tY, then p>2/5. This condition is 
satisfied by our locally self-similar solution. Further- 
more, since the velocity blows up in the shrinking middle 
region, it is clear that our model also does not contradict 
a variant of the Constantin-Fefferman theorem, which 
states that there can be no singularity if the velocity does 
not blow up and the vorticity is locally absolutely integra- 
ble [31]. 

While accord with the theorem is reassuring, we dis- 
cuss a technical issue that has to do with the words 
"sufficiently well behaved" in the first line of this section. 
In order to control the size of a "dangerous term" [31], 
the theorem needs the following assumption: There exist 
two positive constants Oc and pc such that for every pair 
of two locations |x,| and |x2|, whenever |<a(xi,r)| >fic 

and |<a(x2,f) > nc, we have 

\s\n<f>(xx,x2,t)\<\xx-x2\/pc , (83) 

where $(x1;x2,f) is the angle between co(xut) and co(x2,t). 

We now show that a self-similar vorticity field of the 
form (82) does not satisfy assumption (83). To see this, 
we choose two dimensionless vectors X{ and X2 such that 
X^X2, A(X,)||A(X2)|^0, and |sin^|^0. We consider 
two corresponding locations in real space, x1=amX1 and 
x2 = amX2, where a„ 
have 

--H(tc-tmy.   Then at t=t„ 

\<o(%i,tm)\ = 

where / =1,2 and 

|siny(xi>x2>fOT)| 

|x,-x,| 

a» 

\/P 

|A(X,0 

we 

(84) 

am|X,-X2| 

1A(X,)-A(X2)|
2 

A(X!)|2|A(X2)| 

1/2 

(85) 

From (85), we see that for every choice of üc and pc, we 
can find a small enough am such that \co(xut)\>Clc and 
\a(x2,t)\>Q,c, but |sin0(xi,x2,fm)| > |x,— x2|/pc. We 
note that this holds even for the case A(X = 0) = 0, but 
A(X=^0)=^0. Thus assumption (83) is violated. Since 
the assumption of local self-similarity is inherent in our 
treatment, it is questionable whether the Constantin- 
Fefferman theorem is relevant to our model. 

Before we conclude this section, we comment on case 
(ii), discussed in Sec. III. The argument given in the 
preceding paragraph enables us to see why the Beale- 
Kato-Majda theorem [44] is not violated in those cases 
where the velocity null coincides with a vorticity null, ex- 
amples of which are discussed in Sec. III. From (82), it 
follows that max|<a(x,f)|=(fc— t)~l\ A(Xm)| exists even 
when A(X = 0) = 0, but A(X#0)=#=0. Since Xm is in- 
dependent of t, it follows that max|<»(x,f)| blows up as 
(tc — t)~x, consistent with the Beale-Kato-Majda con- 
straint. 

VII. EFFECT OF VISCOSITY 

A. Connection with Lundgren's model 

In Lundgren's model, a two-dimensional flow with vor- 
ticity co2{r,6,t) is placed in an axisymmetry straining flow 
with velocity components uz=s(t)z and ur=—s{t)r/2, 
where s(t) is the strain rate. This is shown to produce a 
three-dimensional axially strained flow with the vorticity 

a>z{r,8,t) = S(t)a2[£,e,T] , (86) 

where the variables S, £, and T are defined, respectively, 
by Eqs. (30), (31a), and Old). At t =0, the vorticity of 
the three-dimensional flow is equal to the vorticity of the 
two-dimensional flow. 

A connection can be established between the present 
model and Lundgren's by using Eqs. (27). If initially, 

J LJ a_f (87) 
3r0      r0 30o     8z0 

then as t —»• t., we have 
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dr 

dro  a_ 
dr   drn 

1/2 

rc-r 
a 

3r0 

1JL- 'c 
1/2 

i   a 
r 36» rc-r ro 3ö0 

» a _ f 
3z      " 3z0 

where 

<*(r,d,t)=S(t)a2(g,&,T) , 

cc2(£,-&,T)=-v]ip2, 

and 

which justifies setting a/3z =0. 
We seek solutions of the Navier-Stokes equation 

da 

■2_ a2 v|= 2+i-i- + -lJi 
3£2   £ 3|   £2 a,?2 

52 

(98a) 

(98b) 

(98c) 

(99) 

dt +u-V<a=o>-Vu+vV2a> (88) 

where v is the v.scosity. Near the origin where the vortex 
singularity occurs for inviscid flows, the vorticity ha a 
dominant z component that is independent of"     We 

^ = -^3sU) + a(r,6,t). m 

The self-consistent velocity associated with this vorticity 
can be approximated as 

E    (T     rS',!e haVC Sh°Wn earlier that *(') obeys 
ddtv T^ 1/leldS " finite'time Sin8ularity of ^e vor- icity. Then the stretch ratio Sit) becomes infinitely 
arge in finite time.   (In contrast, the stretch ratio in 

Lundgrens model grows exponentially with time.)  Due 

of Vn r™CnCy f0r f,Xpl°Sive gr0Wth'the right-hand side 
left u' *97^eve"tually bec^es much smaller than the 
lett-hand side and the equation reduces to 

»z=s(t)z+ßz(r,6,t) , 

«r = s(t)r/2+ßr(r,e,t) , 

ue = -(v,~3/2)s(t)r+ße(r,d,t). 

Since V-u=0, we get 

a,        dßR 

ar    i 
3^2 da2     dip2 da2 

3#   3|       3£   3t? 
-vV|a '2~ -o. (100) 

(90) 

(91) 

(92) 

(93) 

The  presence  of even  a  small  but  finite  viscosity 
thwarts the formation of the vortex singularity. This can 
be seen by introducing a viscous correction to Eq. (97) 
Using Eq. (21) to calculate the term vV2co ^wfsv/a1' 
we can rewrite Eq. (23) as z ,    , 

dt (101) 

iw£SÄand ft are derivab,e from a s,ream 

"'     r 30'   ^-    V- (94) 

Thus, in the presence of viscosity, the strain saturates at a 
value ic, which can be obtained by setting ds/dt =0 We 
then get the dissipation scale 

From the z component of the equation ffl = VXu,we then a,y=2 
v 

1/2 

(102) 

a=-VV. 

The dynamical equation for a follows from the z com 
ponent of the Navier-Stokes equation (88) 

3SL _L L      w    3a 
3? 

(95)      The dissipation rate per unit mass (for the local flow) is 

+ A-f - + 
r 2 

e = JV 

3a 
30 

3",-      du, —L-i L 
dxj      ox. 

12 

Ovsj (103) 

dt -V3~+s(-V3s+a) + vV2a . (96) (104) 

i,    ri1 bJu
LundSren [32], by transforming to the vari- 

ables defined by Eqs. (29)-(31), it is possible to construct 
solutions   to   Eq.   (96)   from   solutions   of   the   two 
dimensional equation 

8g2     j_ 
dT     § 

^h 3oj _ 3^2 3a2 ] 

3# 3£   ij~iä~ P"7«"2 

V3_ 

S2 
s2_ds 

dt 
(57) 

Combining Eqs. (102) and (103), we get 

ads2(3v3/e),/4 = 77S(v3/e)1/4, 

where 77 is the Kolmogorov scale. 

B. The spiral structure 

It is clear by inspection of the initial conditions (Sec. 
ID hat a spiral structure occurs naturally in the strained 
vortex solution. This spiral structure is also manifest in 
Eq. (28) as we go beyond the leading-order axisymmetric 
solution. We now follow Lundgren's method and seek 
cwo-dimensional vortex spiral solutions a2(r,6,t) of the 
equation 
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3a 

bt 

2+l 8^2 3a2     3^2 ^a2 

30    dr       dr   30 

= v 
3r2      r dr     r

2 de2 (105) 

Once the two-dimensional solution (i.e., the solution for 
which the axial strain s =0) to Eq. (105) is known, we can 
write down the three-dimensional axially strained solu- 
tion by using Eq. (98b). For the two-dimensional equa- 
tion (105), we seek solutions of the form 

a2(r,6,t)=A0(r,t) + £ A±{r,t)exp[±i3(e-at)} , 
± 

(106) 

where ä=ßs/r is a slowly varying function of time. We 
write the stream function fair,6,t) as 

^2(r,e,f) = *o(r) + *1(r>0,f) , (107) 

where a=-(l/r2)(dV0/dr). Hence Eq. (105) gives 

da2 

3f 

3a2 

dr' r dr     r2 dd2 *2 . 

where 

A0 = ±-Llr*n) 
r dr 

(108) 

(109) 

The zeroth harmonic of the vorticity satisfies the heat 
equation 

3r 
_9L + 1A 
dr2      r dr »o - (110) 

which has the solution ,40 = (l/f)exp(-r2/4vf). Hence 
A0, as well as a, has a slow decay time T, defined by 
(a)T=(a)a

2/v, where <a> is a characteristic magni- 
tude of 3. As v-—0, the harmonics A± obey the equa- 

tion [32] 

SA. 

bt 
■m-9va'2t2A. (Ill) 

we obtain the axially strained spiral solution, given by 

a(r,9,t)=W0(r,t)+ £ W±(r,t)txp{±i3(0-äT)} , 
± 

(112) 

(114) 

where 

and have the asymptotic behavior 

,4±s/±(r)exp(-3vö'V) , 

where a prime means the derivative with respect to the 
argument and f±(r) represent arbitrary functions of r. 
Using Eq. (112), we can define a decay time for the har- 
monics by the relation 

(5>r± = (<a)aVv)1/3. (113) 

Since the Reynolds number (a)a2/v is large, we have 
T±«T0, which means that the higher harmonics decay 
much faster than the zeroth harmonic. Due to nonlinear 
mode coupling, we expect that other harmonics will be 
generated though they are not present in the initial condi- 
tions. In what follows, we shall neglect the contribution 
of these higher harmonics. 

Using the two-dimensional spiral solution in Eq. (98b), 

W0=SA0(SW2r) = (S/T)exp(-Sr2/4vT) (115) 

and 

W±=Sf±(S1/2r)exv[-l{a'(SW2r)}2vT'] (116) 

In Eqs. (115) and (116), the variables S and Twill hereaf- 
ter be evaluated using the strain rate s =sc. Using Eq. 
(116), the fast decay time T± is seen to be 

r±=(3va'2r1/3. (117) 

The rapidly oscillating factor exp(T/3aT) 
= exp[ +iR (r,t)] can be used to define a local wave num- 
ber 

= dR/dr = 2SW2ä'T . (118) 

Using Eq. (117), q can be estimated to have the charac- 
teristic value 

qc~(se/V)l/2~V-1 , (119) 

where rj is defined by Eq. (101). Thus the Kolmogorov 
scale is an intrinsic feature of the spiral solution (includ- 
ing the zeroth and higher harmonics). 

As discussed by Lundgren, Eq. (118) indicates that 
since S, as well as T, increases with time, the wave num- 
ber q also increases with time while a' remains approxi- 
mately constant. This mechanism of transfer of energy to 
small scales is associated with the tightening of the spiral 
structure, brought about by differential rotation and axial 
straining. 

C. The Kolmogorov spectrum 

As the vorticity intensifies to extremely large values, 
viscosity intervenes, thwarts the formation of the (invis- 
cid) finite-time singularities, and causes transition to tur- 
bulence. It has been shown by Lundgren [32] that the en- 
ergy spectrum of this system is given by 

C -r- 
'o 

E(k)=-^{ cSl/2(T)F2(K,T)dT 
k2 Jn 

(120) 

where K = kS~w2(T), Tc is the lifetime of a vortex seg- 
ment of initial length /0, and C is a constant defined as 
C =2TT

2
10NC/L\ where Nc is the rate of creation of vor- 

tices. (The parameter l0Nc/L3 represents the rate of 
creation of vortex length per unit volume.) The function 
F2 is the enstrophy spectrum, defined by the equation, 

F2(k,t) = k JlT\a2{k cos6k,k smdk,t)\2dek »     (121) 

where 

a2(k,r) = (27r)_2//drd0ra2(r,0,f)exp(-ikT) 

(122) 
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Here k is defined on the two-dimensional (r,9) plane and 
6k is the angle between the unit vectors k and x 

The enstrophy spectrum (121) can be calculated by us- 

h8owne nfiT lEq\(H1) 3nd (U2)- Jt has been 
E<7uJ-i $ that thC Zer0th harmonic g^es 
*oW k . Since we anticipate that this will be sub- 
dominant to the contribution of the spirals to the energy 
spectrum for large k we consider on5y the contribu on 

Fnln   PirlS' deSCnbCd by the asymPtotic solutions (112). 
Following the steps described in Ref. [32], we get 

2 \2/3 

Cr~ 
<i> 
rtf) vs' 

1/3 

52 

(129) 

If we recall that e«3*£ we obtain a constant Q~0.8. 

VIII. SUMMARY AND DISCUSSION 

F2(k,t)=2kexp(-6va'2t3) 
± 

f^dr rf±(r)J±3(kr)exp(T3iät) 

(123) 

ItaÄ^S* '* USiK8 the aSympt°tiC eXPreSsion for the vessel function, we obtain a rapidly varying function in 
the integrand of the form exp {-iikr+StTThe in 
tegral in Eq. (123) can then be'Jaluated by th Llhod of 
stationary phase. The result is 

f0
C°drrf±(r)J±(kr)exp(T3im) 2

S-^±M! 
2ka"(rs)t   ' 

(124) 

ti^HT-'^ j? grVen by thG stationary-phase condi- 
Ecs ml   {TX \Z°: ? 1S n°W apparent> b* insPecti°n of Eqs (123) and (124), that the enstrophy spectrum F2(*,,) 
hasche se^simiar-form t^G(k/t) in the inertial range 

tw K ^    "        S Slmilarity form for the enstrophy 
which is preserved when dissipation can be neglecteS is' 
responsible for the Kolmogorov spectrum [32 34     in 
serting Eqs. (123) and (124) in Eq .(120), w   obta n the" 
contnbution of the spirals to the energy spectrum 

with the coefficient 

<f)2/3 e+ C  = ± 
K   r(i) ~^\VJ^TJ ■ 

(125) 

(126) 

Using the definitions 

&=5,/2rIf dT=jTd§, (127) 

and writing sc ~S/T, we obtain 

rtf) 
e±=4-n-Cv1/3ic 

22/3 
r»rf«. &l/±(&)l2 

J°   Il?(ETFr (128) 

£cJnt^ht'n^,nay appear t0 be model dePendent> 
TTk)»Fm     „ SUggeStS    s°-    However>    since 
*±(k)»E0(k)   and   e±«e,   we   note   that   Eq.   (125) 
reduces to H   y     ' 

thr" H 
paPer',w^ hav* built upon a recent model of 

three-dimensional Euler flows that yields a finite-time 
vortex singularity [28]. In Ref. [28] as well as here we 
have emphasized that geometrical features of an invi^Td 
flow have a strong role in determining where unbounded 
local vorticity growth occurs in finite time. Our inkkl 

n „T'Jw COntainVW° VOrticitv nulIs with a velocity 
are a sourr

nf1S °f ge°metrical int^est because nulls 
are a source of separatnces and singularities tend to 
occur near separatrices. 

The finite-time vortex singularity in our model occurs 
at the stagnation point of the flow. The singularity devel- 
ops at a point and is locally self-similar. The inviscid 
flow m the vicinity of the singular point has a complex 
spatial structure involving two disparate small scales ? 

k »I!?™ 1S aSPIra,
u

structure ^ the initial conditions that 
«not essential to the formation of the vortex singularity 
The presence of even a small but finite viscosity thwarts 
he formation of the vortex singularity and the splSs 

tZ^l     ' Tchanism for energy cascade fr«™ the 
large to the small spatial scales, as originally envisioned 
by Lundgren [32]. Once the connection with Lundgren's 
mode is established, the Kolmogorov spectrum follows 
after time averaging over the life of a vortex tube. As ex- 
plained by Gilbert [34], the k->" spectrum is a robust 
consequence of time averaging that causes some remark- 
able cancellations in Lundgren's model. 

An important question is how the results of this model 

Htm,6 T°reCted t0 nUmeriCal (aS wel1 as rea" experi- 
tTonftw r ,S an £XtensiVe database on vort^ Simula- 
ions that has grown out of careful numerical work over 

the past decade [5-9], including studies of vortex recon- 
nects with antiparallel and orthogonal vortex tubes 
148-54] in which no conclusive identification of vortex 
singulanties have yet been made. There are, however! 
three recent numerical studies [45,46,55] in which finite- 
time vortex singularities growing as inverse time have 
been reported We have made a qualitative connection 
with the singulanties reported in one of them (Ref. [45]) 

The model we have developed is quite simple and its 
assumptions need to be checked by further analytical and 
numerical studies. Yet the model seems to contain some 
essential attributes of turbulence. The qualitative picture 

oflaLT.ergr ZT ,thiS Papef beginS With the tendency 
of) unbounded local growth of vorticity in finite time at 
separatnces, defined by a network of nulls that act as at- 
tractors for the flow. This process leads to the growth of 
inviscd small scales. The vorticity intensification is even- 
tually halted in the presence of even a small but finite 

wW TU" ^,ral StrUCtUreS then Pr°vide a mechanism by 
which the Kolmogorov spectrum may be realized. 
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Sufficient condition for a finite-time singularity in a high-symmetry Euler flow: 
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A sufficient condition is obtained for the development of a finite-time singularity in a highly symmetric 
Euler flow, first proposed by Kida [J. Phys. Soc. Jpn. 54, 2132 (1995)] and recently simulated by Boratav and 
Pelz [Phys. Fluids 6, 2757 (1994)]. It is shown that if the second-order spatial derivative of the pressure 
(pxx) is positive following a Lagrangian element (on the x axis), then a finite-time singularity must occur. 
Under some assumptions, this Lagrangian sufficient condition can be reduced to an Eulerian sufficient condi- 
tion which requires that the fourth-order spatial derivative of the pressure (pxxxx) at the origin be positive for 
all times leading up to the singularity. Analytical as well as direct numerical evaluation over a large ensemble 
of initial conditions demonstrate that for fixed total energy, pxxxx is predominantly positive with the average 
value growing with the numbers of modes. [SI063-651X(96) 13008-7] 

PACS number(s): 47.27.Cn 

The mechanisms by which a fluid generates intense small- 
scale dynamics are crucial to our understanding of turbu- 
lence. Once small scales are created spontaneously, dissipa- 
tion intervenes, and the dynamical balance between the two 
processes determines the character of turbulence. In particu- 
lar, the dissipation rate of Navier-Stokes turbulence depends 
crucially on how the vorticity scales with the Reynolds num- 
ber. Therefore, it is of great importance to study how small 
scales can be generated in a fluid by the action of vortex 
stretching controlled by the nonlinearities in the three- 
dimensional (3D) Euler equation (which is the infinite- 
Reynolds-number limit of the Navier-Stokes equation), 

— + v-Vv=-V>. 
dt K (1) 

Here, for incompressible velocity fields, the self-consistent 
pressure p must satisfy the equation V2p= — V-(v- Vv). 
The main question is whether the solution to Eq. (1) becomes 
singular in finite time for a smooth initial condition with 
finite energy. 

Mathematicians have provided some useful and rigorous 
constraints on the nature of possible singularities in 3D flows 
[1-4], but a physical model which explicitly demonstrates 
the singularity in a mathematically rigorous way remains 
elusive. It has been claimed [5,6] that a recent analytical 
model developed for a symmetric initial condition exhibits a 
finite-time singularity, but the demonstration relies on some 
strong assumptions which, while physically plausible, have 
not yet been substantiated formally or verified by a suitably 
designed numerical experiment. The analytical results [5] 
and [6] are suggestive: if one begins from an initial state with 
symmetries that are preserved by the Euler equation for all 
time, then the problem of finite-time singularities of the Eu- 
ler equation could be somewhat more tractable. 

This paper is stimulated by the recent numerical experi- 
ment of Boratav and Pelz (BP) [7] on a highly symmetric 
initial flow field, first proposed by Kida [8]. Due to the high 
symmetry of the Kida flow, BP were able to simulate the 3D 
Navier-Stokes equation with high spatial resolution and rela- 

tively small viscosity. (For the computer runs reported by 
BP, the Reynolds number Re (=l/v) varies from 1000 to 
5000 and the maximum total resolution is 10243.) Within the 
limits of the spatial resolution, BP report that the maximum 
vorticity scales as (tc-t)~\ and attribute its eventual satu- 
ration to the presence of viscosity. In a subsequent paper [9], 
BP report a loss of regularity in the strain tensor, and find, 
furthermore, that the spatial locations of the almost-divergent 
strain and vorticity are not coincident. 

The principal goal of this paper is to present a sufficient 
condition for the development of a finite-time singularity in 
the Kida flow. The demonstration of this sufficient condition 
provides physical insight into a possible mechanism for sin- 
gularity formation in this highly symmetric geometry. Two 
forms of this sufficient condition are given: a Lagrangian 
form for a moving point, and a more useful Eulerian form for 
a stationary point (the origin) that can be derived from the 
Lagrangian form under some assumptions. Though we are 
unable to provide an analytical proof, there is some numeri- 
cal evidence [10] that the Eulerian sufficient condition is 
satisfied for the specific initial condition used in the numeri- 
cal experiment of BP. We present additional statistical evi- 
dence that the underlying symmetries of the Kida flow make 
it highly probable that this condition is also valid for a large 
ensemble of initial conditions. 

The symmetries of Kida flows have been discussed in 
detail in [8]. Here we build these symmetries into the repre- 
sentations for v and p. The components of the velocity field 
y={vx,vy,v.) can be written as vx

z=u(x,y,z), vy 

= u(y,z,x), vz — u(z,x,y), where u can be expressed in Fou- 
rier series, 

u(x,y,z) = Zj almns\nlx cosmy cosnz- (2) 
Imn 

Here (l,m,n) are natural numbers which represent the three 
components of a wave vector (/¥=0). In order to satisfy the 
symmetries and the condition V-v=0, the following condi- 
tions must hold: 
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l,m,n  must be all odd or all even, (3) 

aimn={-\)'alnm, (4) 

=0 by the incompressibility condition. The dynamical equa- 
tion for a can be found by taking the x derivative of (1). We 
obtain 

2 la,mn = 0, 
Imn 

(5) 

where the last summation (denoted by C) is over all permu- 
tations of any three natural numbers (l,m,n), i.e., lalmn 

+ mamnl + nanim = 0.By (2) and (5), it can be seen that for x 
close to the origin, v=0(|x|3). In particular, the initial state 
considered by both Kida [8] and BP is u0: a1>31=l, aUi3 

= - 1, with all other terms set to zero. For this initial state, 
vx = dvx/dx = 0 at f=0 for all x. 

With u represented by (2), it can be shown that the pres- 
sure p is of the form p = 2 tmnp [mncoslx cosmy cosnz, where 
plmn, using the Poisson equation for the pressure, is given by 

Pimn = (lAlmn + mAmnl + nAnlm)/(l2 + m2 + n2). 

with Almn defined by 

(v-Vv)^=X Aim„sinlx cosmy cosnz. 
Imn 

It can be shown that Almn also satisfies (3) and (4) (with 
almn replaced by Almn) as well as (5), provided the summa- 
tion in (5) is carried out over all (l,m,n). Note that Almn is a 
quadratic function of almn. If there are two terms a,mn and 
apqr in u, then there are terms with the following (l,m,n) 
values in A Imn 

|/±/?|,|ffj±4|,|n±r|),(|/±g|,|m±r|,|rt±p|), 

(l±r\,\m±p\,\n±q\), (6) 

and their permutations. By (5), we obtain Pimn = pm„i 
= Pnim = (.-\)lPinm ■ From U)' we obtain the time evolution 
equation of almn, 

1 Imn + Aimn-lpimn-0, 0) 

where the overdot denotes time derivative. Equation (7) and 
the mode-generation scheme (6) provide a prescription for 
the dynamical excitation of modes with increasingly large 
wave numbers, or a cascade of energy to small scales. If this 
process happens fast enough, then there may be a finite-time 
singularity. 

Since the Euler equation preserves the Kida symmetries 
for all time, the selection rules imposed on almn, Almn, and 
plmn by these symmetries are preserved by Eq. (7). By (5) 
and (7), we obtain the useful relation 

,—2 ': 
imn 

Pin , = 0, (8) 

where pxx denotes the second spatial derivative of p at the 
origin. It follows that V2p = 0 at the origin. 

Let us now consider the flow along the line y = z = Q. By 
(2), we obtain vy = vz = 0, and v x=u = 2lmnalmns,inlx. Note 
that the vorticity is also identically zero along this line. We 
define a*dxvx, ß=dyvy, and y^dzvz, where a+ß+y 

a+ a ,=2 
Imn 

l2plmncoslx(t). (9) 

Equations similar to (9) can be written for ß and y. From (9), 
we obtain the following sufficient condition for a finite-time 
singularity: If pxx>0 for all time following a Lagrangian 
element, then a will be singular in finite time. However, in 
order to test this condition, we need to evaluate pxx by fol- 
lowing a fluid element. It may be possible to test this condi- 
tion numerically, but it is not convenient to do so analyti- 
cally. We, therefore, attempt to obtain an Eulerian sufficient 
condition that can be evaluated at a fixed point (the origin). 

Using (1), we write 

-/?.<= X lpimnsmlx{t), 
Imn 

(10) 

where the overdot denotes total time derivative along a fluid 
element moving in a trajectory x = x{t). By (8), for x close to 
zero, we obtain the Taylor expansion 

Pxx 
»!=-■ x3+0(x5), (1.1) 

where pxxxx is the fourth-order spatial derivative at the ori- 
gin, given by pxxxx=2imnl

Aplmn. Note that at the origin, 
although V2V2p = 3pxxxx+6pXXyy=0, pxxxx is nonzero in 
general. For further reference, note also that pxxxx(x) is a 
symmetric function of x. The fourth-order derivative pxxxx 

plays an important role because all other lower-order deriva- 
tives vanish at the origin in this highly symmetric flow. From 
the exact equation (9), we obtain 

~>        y xxxx  -i 
a+a = "z x"(?) + 0(x4). (12) 

It is easy to see, using the selection rules for plmn, that 
pxx(x) is symmetric and px(x) is antisymetric about x 
= IT/2. Also, since px=0 at x = 0 and X-TT/2, we infer that 
pxx has to assume both positive and negative values within 
the range 0<X<TT/2. Hence, there must be a region of x in 
which amplification of or occurs. This leads to the next ques- 
tion: is there always a fluid element in the region of ampli- 
fication? To answer this question, let us assume that there 
exists a range 0<x<X(t) in which pxxx(x)>0 for all time 
before a possible singularity appears. Furthermore, we as- 
sume that X(t)>C, where C is a finite positive constant for 
all time (including t—*tc). Since pxxxx(0) = px(0) = 0 by the 
symmetry conditions and pxx(0) = 0 by (8), it follows from 
the assumption above and by simple integration from x = 0 
that the quantities px(x), pxx(x), and pxxx{x) are also posi- 
tive within the range 0<x<X. Then by (10) and the fact that 
vx(x,t = 0) = 0, there exists a fluid element with the La- 
grangian coordinate x(t) within this range (0,C) always ac- 
celerating towards the origin x = 0. However, since the con- 
dition vx(x = 0,t) = 0 is always maintained by the symmetry 
of the flow, the fluid element cannot pass through the origin. 
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Therefore, x(t) always decreases but remains positive, even 
when the velocity becomes very large (or even singular). 
This seeming contradiction between what the trajectory tends 
to do and what it is constrained to do by symmetry is pre- 
cisely the mechanism for the development of the finite-time 
singularity. On the one hand, x(t) is always accelerated to- 
wards the origin and tends to reach the origin in finite time. 
On the other hand, x(t) cannot actually reach the origin be- 
cause the symmetry conditions forbid it. The system resolves 
this contradiction by having the velocity derivative a 
= dvxldx blow up in finite time, since the fluid element with 
finite and increasing velocity is forced to go infinitesimally 
close to the point with zero velocity (x = 0). This behavior is 
reflected in Eq. (9) according to which a tends to negative 
infinity in finite time due to the presence of the a2 term. If 
the time dependence of a is determined dominantly by the a2 

term, then a—*(tc-t)~l as f—>fc. Under the assumptions 
discussed above, we have thus demonstrated that the condi- 
tion pxxxx>0 at the origin is a sufficient condition for a 
finite-time singularity. 

We caution that the assumption of existence of a finite 
X{t) is a strong one, and may limit the applicability of our 
sufficient condition at a fixed point. In some physical cases, 
as the singularity develops, X{t) may actually tend to zero as 
f—*tc. If that occurs and a fluid element falls out of the 
amplification region, tc may tend to infinity. However, we 
speculate that if a shrinking X(t) is accompanied by pxxxx 

growing sufficiently fast, then the finite-time singularity may 
be supported because a fluid element is then accelerated fast 
enough to remain in X(t) even as X(t)—>0. 

The sufficient condition for singularity (in its moving- 
point or fixed-point form) does not violate the theorems 
proved by Beale-Kato-Majda [1] and Ponce [2] which can be 
essentially summarized as follows: If there occurs a finite- 
time singularity in an initially smooth Euler flow of finite 
energy, then the time integral of the maximum norm of the 
vorticity [1] (deformation tensor [2]) must tend to infinity as 
r—>fc. We remark that our discussion of the sufficient con- 
dition involves the y = z = 0 axis on which the vorticity is 
identically zero by symmetry, but there is no restriction on 
the vorticity off the axis. If the sufficient condition is satis- 
fied, the deformation tensor must be singular near the origin 
at least as fast as l/(fc —f), but this leaves open the possibil- 
ity that the vorticity can blow up at another spatial location. 
Indeed, BP [9] report that the locations of near-divergent 
strain and vorticity do not coincide in space. Such a possi- 
bility is not inconsistent with [1] and [2]. BP [10] have re- 
cently checked that sufficient condition in their numerical 
simulation for the initial condition in one of their runs (run 
D3), and their data indicates that pxxxx does remain positive 
and growing for all times from t = 0 to the singularity time. 
(In particular, pXKKX is found to take the following sequence 
of values: 40.53"at ? = 0, 226.4 at f=1.5, 2.642X104 at 
?=2.0, 2.802X105 at t = 2.125, and 1.11 IX107 at r=2.25. 
The extrapolated singularity time tc reported by BP for this 
run is 2.21.) 

Though the numerical evidence presented above is sug- 
gestive, it cannot be regarded as definitive proof of the ex- 
istence of the singularity. Furthermore, we cannot deduce 
generic properties of Kida flows from the numerical evidence 
for one specific initial condition. We now proceed to give a 

statistical demonstration that the positivity of pxxxx is highly 
probable over a large ensemble of initial conditions. 

First, we introduce a minimal, independent set of modes 
«„ of the Kida flow such that any flow u satisfying the sym- 
metries of the Kida flow can be written as u = 1nanun, 
where an are real constants. Then, the following is the only 
possible choice for the set of independent modes that yield a 
minimum number of terms for each mode and satisfy the 
symmetries (4) and (5). For any three distinct, odd positive 
integers l,m,n, there are, in general, two independent modes: 

U]:     a;„,„——«;,,„ —w,     a„„i—    ctmi„—    I 

u?:     a hnn' 

nr 

~ainm — n,     a„i„—    a„„i — 
(13) 

lnml 

By (5), the third mode (u3:    amnl= -amln= -n, anlm = 
— anml = m) is not independent and can be written w3 

= {nux—miii)ll. In practice, we can choose any two of the 
above set of three as independent. However, if two of the 
three integers are equal, there is only one independent mode, 
aiml=-aUm=l. Also, there is no mode for l — m = n. The 
initial condition used by BP, that is, w0:  «1,3,1= 1, 01,1,3 = 
— 1, is clearly an independent mode. For any three even 
natural numbers, there are also, in general, only two indepen- 
dent modes: 

^Imn     ^Inm     "*>       ®mnl     ^mln' 

1 Imn ' ~&lnm     M>       ®nlm     &nml ^ • 

(14) 

The third mode, which is not independent, is again «3 

= (nui — mu2)/l. If two of the three numbers are equal or 
one of them is zero, then there is only one independent 
mode. Also, there is no mode if two numbers are zero or one 
number is zero and the other two equal, or three numbers are 
equal. 

The quantity pxxxx (at the origin) is a quadratic function of 
u. We write pxxxx=P{u,u). With the representation of u, we 
obtain 

P.««=S a2„P{un,u„) + '2l   2  anamP{un,um). 

(15) 

Defining Pnm = [P(un,um) + P(um,un)]/2, we can also 
write pxxxx = 'Zn2manPnmam . We have a constructive proof 
using MATHEMATICA that P(un,un)>0. The symbolic ma- 
nipulations are too long to be presented here and will be 
discussed in a separate publication. In order to determine the 
positivity of pxxxx, we now need to consider the second term 
on the right-hand side of (15), which involves the cross 
terms. The contributions from the cross terms cannot be ne- 
glected in principle, and they can be positive or negative 
depending on the sign of an. To assess their importance, let 
us consider an example with two modes, i.e., u = amum 

-anun, so that 

>-„2 P{u,u) = amPmm + anPnn + 2amanPmn. (16) 

The cross term Pnm is given by the relation 2Pnm = P(un 

+ um,un + um)-Pnn-Pmm. Note that the cross term be- 
tween an odd mode and an even mode is always zero due to 
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TABLE I. Some results of the Monte Carlo calculations of pxxxx with v=3 showing that px 

cases. See text and Eqs. (27) and (28) for definitions of the variables. 
,>0 in most 

N KN M (units of 106) V(%) (P) (PD) (d) (do) (0 
11 44 2 1.09 20.4 20.4 21.9 8.6 1.00 
37 99 2 0.96 41.9 41.9 45.5 11 1.00 
64 136 3 0.82 61.8 61.2 67.6 13 1.01 
136 219 3 0.77 98.2 98.0 108 14 1.01 
211 296 4 0.70 130 131 141 16 1.00 
290 360 7 0.64 161 162 174 17 1.00 
449 480 10 0.64 212 214 230 18 0.99 
612 587 20 0.61 267 264 290 19 1.01 
111 691 30 0.61 307 308 334 20 1.00 
945 780 40 0.61 349 351 377 21 0.99 
1114 875 50 0.58 394 390 423 22 1.01 
1283 963 60 0.56 429 430 464 22 1.00 
1455 1043 80 0.58 470 467 505 23 1.01 
1624 1123 100 0.59 500 502 537 23 1.00 
1973 1275 160 0.54 573 571 616 24 1.00 
2144 1352 200 0.54 605 602 675 25 1.01 

the selection rules on the pressure. For the positivity of 
P(u,u) in (16), it is sufficient to have P P   : mm1 nn 

DL- This 
relation is found to be true numerically if either um or un is 
the initial flow u0 defined above, or the mode with a3>3tl 
= 1 and a313=-l. However, the condition PmmPnn^P2

nm 

is not always true for any two modes. Instead, we have 
shown by using MATHEMATICA that 

~p~p—>0   as F" A   mn*   nn *- n 
(17) 

where km, kn are the wave numbers of the modes um, un. 
The limit (17) is attained faster by odd modes than by the 
even modes. Hence, for those cases, which make up most of 
the pairs of modes for a flow spanning wave numbers over 
several orders of magnitude, the contribution from off- 
diagonal terms is much smaller than that from diagonal 
terms. 

To estimate the contributions from the cross terms sys- 
tematically in a general case, let us consider a flow repre- 
sented by N modes (n=\,N) that includes all modes with 
kn<kN. For normalization, we define an energy functional 

£(K)=-3" 

1 ClTT [ITT CllT 

= -j        dx\     dy\     dzu2^!^ aLo+2 
TT     Jo JO JO Im Imn 

'Imn' 

(18) 

which is conserved in an Euler flow. For the specific initial 
condition used in [7] and [8], we obtain E(u0) = 2. Hence, 
we normalize the un in (18) such that E(un) = 2. We now 
perform a Monte Carlo calculation of P(u,u). The calcula- 
tion is carried out M times with M > 1, with an chosen ran- 
domly each time within a range specified by an energy spec- 
trum in k space of the form £,(/c)«/c_/i to simulate the 
energy distribution over different length scales. In most of 
our calculations, we choose /j. = 3 which is the spectrum ob- 
served by BP near t = tc [7]. (As discussed later, the qualita- 
tive trends observed are not sensitive to variations in /n.) In 

Table I, we report numerical results with /V=s2144, or k2
N 

«1352. We define 77 as the percentage of cases with negative 
vales for pxxxx, and the averaged quantities are 

1 M 

(P)=T7^P M jfi Fxxxx' 

.     M      N M 
(19) 

where PD is the contribution from the diagonal terms. Also, 
we define the deviations and the average ratio as 

(dD)s 

M 

M ,?, {Px ~(P)Y 

ü%(Po-(Po))2 

1/2 

1/2 

(20) 

M 1      "'    P 

The convergence of the data is tested for large M in two 
cases. The fluctuations in all quantities are found to be typi- 
cally less than 2%. 

We examine the sensitivity of the results to the assumed 
form of the energy spectrum by recalculating the N=\ll 
case with /J,= -2,0,2,4,6. It is found for these cases that 77 
becomes 1.4%, 1.31%, 0.91%, 0.35%, 0.26%, respectively. 
Hence, the effect of /J. is seen not to be qualitatively impor- 
tant. From the data in Table I, we see that 77 is less than 1 % 
for most cases, except the cases with very small N. If this 
trends continues to hold for larger N values, then the prob- 
ability that pxxxx>0 is much larger than the probability that 
Pxxxx<(^- Note also that for all the cases discussed above, 
(P)n*(PD)**>{d), (r)»»l. This implies that the average con- 
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tribution to pxxxx is dominantly from the self terms, and that 
the cross terms mostly cancel each other upon summation. 
We also see from Table I that (P)^k2

N which, in light of our 
remarks above, is further evidence in support of a finite-time 
singularity because the data clearly shows the growth of 
pxxxx as length scales decrease. 

The numerical results presented above are based mostly 
on statistics. Since the deterministic dynamics of Kida flows 
do not have to follow the most probable path, we cannot 
regard the evidence above as a dynamical proof that 
pxxxx>0, However, the evidence does suggest that the con- 
dition pxxxx>0 is highly probable and is strongly favored by 
the symmetry properties of the Kida flow, independent of the 
precise dynamical details emerging from a specific initial 
condition. 

The high symmetry of the Kida flow enables us to obtain 
some analytical and numerical results that provide strong 
physical evidence in support of a finite-time singularity in 
this class of Euler flows. The assumed symmetry properties 
preserve the geometric structure of the initial state for all 
times. Such a singularity may be unstable if the symmetry 
conditions are relaxed, and so the qualitative implications of 
these results for more general 3D configurations remain un- 
clear. Till 1990, numerical results on 3D flows were incon- 
clusive despite the sophistication of the numerical methods 
employed [11-15]. Finite-time singularities have been re- 
ported in axisymmetric flows with swirl [16-18], but the 
results are controversial [19,20]. More recently, prior to the 
work of BP, two other numerical experiments [21,22] have 

presented evidence in support of a finite-time singularity in 
3D Euler flows. In particular, Kerr's simulation [22] involves 
antiparallel vortex tubes, and has qualitatively similarities 
with that of BP in that the singularity occurs in the vicinity 
of the symmetry axis. The work of Kerr has its antecendents 
in earlier studies of vortex reconnection with antiparallel and 
orthogonal vortex tubes [23-29]. 

In conclusion, we have proposed a sufficient condition for 
a finite-time singularity in a Kida flow. We have shown that 
if the second-order spatial derivative of the pressure (pxx) is 
positive following a Lagrangian element (on the x axis), then 
a finite-time singularity must occur. Under some assump- 
tions, this Lagrangian sufficient condition can be reduced to 
an Eulerian sufficient condition which requires that the 
fcurth-order spatial derivative of the pressure (pxxxx) at the 
origin be positive for all times leading up to the singularity. 
Though we are unable to provide an analytical proof that this 
is indeed satisfied in the simulation of BP [7], there is nu- 
merical evidence [10] in support of this condition. Further- 
more, we have presented strong physical evidence which 
suggests that it is highly probable that the Eulieran form of 
the sufficient condition for singularity is satisfied for a large 
ensemble of initial conditions. 
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